\lecture{20}{2024-01-09}{The Infinite Torus} \gist{ \begin{example} \footnote{This is the same as \yaref{ex:19:inftorus}, but with new notation.} Let $X = (S^1)^{\N}$\footnote{We identify $S^1$ and $\faktor{\R}{\Z}$.} and consider $\left(X, \Z \right)$ where the action is generated by \[ \tau\colon (x_1,x_2,x_3,\ldots) \mapsto(x_1 + \alpha, x_1 + x_2, x_2 + x_3, \ldots) \] for some irrational $\alpha$. \end{example} \begin{remark}+ Note that we can identify $S^1$ with a subset of $\C$ (and use multiplication) or with $\faktor{\R}{\Z}$ (and use addition). In the lecture both notations were used. % to make things extra confusing. Here I'll try to only use multiplicative notation. \end{remark} }{} We will be studying projections to the first $d$ coordinates, i.e. \[ \tau_d \colon (x_1,\ldots,x_d) \mapsto (e^{\i \alpha} x_1, x_1x_2, \ldots, x_{d-1}x_d). \] $\tau_d$ is called the \vocab{$d$-skew shift}. For $d = 1$ we get the circle rotation $x \mapsto e^{\i \alpha} x$. \begin{fact} \label{fact:tau1minimal} The circle rotation $x \mapsto e^{\i \alpha} x$ is minimal. In fact, every subgroup of $S^1$ is either dense in $S^1$ or it is of the form \[ H_m \coloneqq \{x \in S^1 : x^m = 0\} \] for some $m \in \Z$.% \footnote{cf.~\yaref{s12e2}} \end{fact} We will show that $\tau_d$ is minimal for all $d$, i.e.~every orbit is dense. From this it will follow that $\tau$ is minimal. Let $\pi_n\colon X \to (S^1)^n$ be the projection to the first $n$ coordinates. % TODO ANKI-MARKER \begin{lemma} \label{lem:lec20:1} Let $x,x' \in X$ with $\pi_n(x) = \pi_n(x')$ for some $n$. Then there is a sequence of points $x_k$ with \[\pi_{n-1}(x_k) = \pi_{n-1}(x) = \pi_{n-1}(x')\] for all $k$ and \[ F(x_k, x) \xrightarrow{k \to \infty} 0, F(x_k, x') \xrightarrow{k \to \infty} 0, \] where $F$ is as in \yaref{def:F}, i.e.~$F(a,b) = \inf_{n \in \Z} d(\tau^n a, \tau^n b)$, where $d$ is the metric on $X$, $d((x_i), (y_i)) = \max_n \frac{1}{2^n} | x_n - y_n|$.% TODO use multiplicative notation \end{lemma} \begin{proof} Let \begin{IEEEeqnarray*}{rCl} x &=& (\alpha^0_1, \alpha^0_2, \ldots, \alpha^0_{n-1}, \alpha_n, \alpha_{n+1}, \alpha_{n+2},\ldots)\\ x' &=& (\alpha^0_1, \alpha^0_2, \ldots, \alpha^0_{n-1}, \alpha_n, \alpha'_{n+1}, \alpha'_{n+2},\ldots).\\ \end{IEEEeqnarray*} We will choose $x_k$ of the form \[ (\alpha^0_1, \alpha^0_2, \ldots, \alpha^0_{n-1} \alpha_n e^{\i \beta_k}, \alpha_{n+1}, \alpha_{n+2}, \ldots), \] where $\beta_k$ is such that $\frac{\beta_k}{\pi}$ is irrational and $|\beta_k| < 2^{-k}$. Fix a sequence'(b)). of such $\beta_k$. Then \[d(x_k,x) = 2^{-n} |e^{\i \beta_k} - 1| < 2^{-n-k} \xrightarrow{k\to \infty} 0.\] In particular $F(x_k, x) \to 0$. We want to show that $F(x_k, x') < 2^{-n-k}$. For $u, u' \in X$, $u = (\xi_n)_{n \in \N}$, $u' = (\xi'_n)_{n \in \N}$, let $\frac{u}{u'} = (\frac{\xi_n}{\xi'_n})_{n \in \N}$ ($X$ is a group). We are interested in $F(x_k, x') = \inf_m d(\tau^m x_k, \tau^m x')$, but it is easier to consider the distance between their quotient and $1$. Consider \[ w_k \coloneqq \frac{x_k}{x'} = (\underbrace{1,\ldots,1}_{n-1}, e^{\i \beta_k}, \overbrace{\frac{\alpha_{n+1}}{\alpha'_{n+1}}, \frac{\alpha_{n+2}}{\alpha'_{n+2}}, \ldots}^{\mathclap{\text{not interesting}}}). \] \begin{claim} $F(x_k, x') = \inf_m d(\sigma^m(w_k), 1)$, where $\sigma(\xi_1, \xi_2, \ldots) = (\xi_1, \xi_1\xi_2, \xi_2\xi_3, \ldots)$. \end{claim} \begin{subproof} We have \begin{IEEEeqnarray*}{rCl} F(u,u') &=& \inf_m d(\tau^m u, \tau^m u')\\ &=& \inf_m d(\frac{\tau^m u}{\tau^m u'}, 1)\\ &=& \inf_m d(\sigma^m\left( \frac{u}{u'} \right), 1). \end{IEEEeqnarray*} \end{subproof} Fix $k$. Let $w^\ast = (1,\ldots,1, e^{\i \beta_k}, 1, \ldots)$. By minimality of $(X,T)$ for any $\epsilon >0$, there exists $m \in \Z$ such that $d(\sigma^m w_k, w^\ast) < \epsilon$. % TODO Think about this Then \begin{IEEEeqnarray*}{rCl} \inf_m d(\sigma^m w_k, 1) &\le & \inf_m d(\sigma^m w_k, w^\ast) + d(w^\ast, 1)\\ &\le & 2^{-n} | e^{\i \beta_k}- 1|\\ &<& 2^{-n-k}. \end{IEEEeqnarray*} \end{proof} \begin{definition} For every continuous $f\colon S^1 \to S^1$, the \vocab{winding number} $[f] \in \Z$ is the unique integer such that $f$ is homotopic% \footnote{$f\colon Y \to Z$ and $g\colon Y \to Z$ are homotopic iff there is $H\colon Y \times [0,1] \to \Z$ continuous such that $H(\cdot ,0) = f$ and $H(\cdot ,1) = g$.} to the map $x \mapsto x^{n}$. \end{definition} \gist{% \begin{remark} \label{rem:l20:sigma} Note that for \begin{IEEEeqnarray*}{rCl} \sigma\colon (S^1)^d &\longrightarrow & S^1 \\ (x_1,\ldots,x_d) &\longmapsto & x_d \end{IEEEeqnarray*} we have that $T = \tau_{d+1}$, where \begin{IEEEeqnarray*}{rCl} T\colon (S^1)^d \times S^1 &\longrightarrow & (S^1)^d \times S^1 \\ (y, x_{d+1}) &\longmapsto & (\tau_d(y), \sigma(y) x_{d+1}). \end{IEEEeqnarray*} \end{remark} }{} \begin{theorem} \label{thm:taudminimal:help} For every $d$ if $\tau_d$\footnote{more formally $((S^1)^d, \langle \tau_d \rangle)$} is minimal, then $\tau_{d+1}$ is minimal. \end{theorem} \begin{corollary} $\tau_d$ is minimal for all $d$. \end{corollary} \begin{proof} $\tau_1$ is minimal (\yaref{fact:tau1minimal}). Apply \yaref{thm:taudminimal:help}. \end{proof} \begin{corollary} Since all the $\tau_d$ are minimal, $\tau$ is minimal. \end{corollary} \begin{proof} \gist{% We need to show that every orbit is dense. This follows from the definition of the product topology, since for a basic open set $U = U_1 \times \ldots \times U_d \times (S^1)^{\infty}$ it suffices to analyze the first $d$ coordinates. }{We need to show that every orbit is dense. For this it suffices to analyze finitely many coordinates.} \end{proof} \gist{% \begin{refproof}{thm:taudminimal:help} Let $S \coloneqq \tau_d$, $T \coloneqq \tau_{d+1}$ and $Y \coloneqq (S^1)^d$. Consider \begin{IEEEeqnarray*}{rCl} \gamma\colon S^1 &\longrightarrow & Y \\ x &\longmapsto & (x,x,\ldots,x). \end{IEEEeqnarray*} Note that \begin{enumerate}[(a)] \item $\gamma$ and $S \circ \gamma$ are homotopic via \begin{IEEEeqnarray*}{rCl} H\colon S^1 \times [0,1] &\longrightarrow & (S^1)^d \\ (x, t)&\longmapsto & (x e^{\i t \alpha}, x^{t+1}, x^{t+1}, x^{t+1},\ldots, x^{t+1}) \end{IEEEeqnarray*} \item For all $m \in \Z \setminus \{0\}$, we have $[x \mapsto \left(\sigma(\gamma(x))\right)^m] = m \neq 0$, since $\sigma(\gamma(x)) = \sigma((x,\ldots,x)) = x$. \end{enumerate} \phantom\qedhere \end{refproof} }{}