\lecture{15}{2023-12-05}{} \begin{theorem}[The Boundedness Theorem] \yalabel{Boundedness Theorem}{Boundedness}{thm:boundedness} Let $X$ be Polish, $C \subseteq X$ coanalytic, $\phi\colon C \to \omega_1$ a coanalytic rank on $C$, $A \subseteq C$ analytic, i.e.~$A \in \Sigma^1_1(X)$. Then $\sup \{\phi(x) : x \in A\} < \omega_1$. Moreover for all $\xi < \omega_1$, \[ D_\xi \coloneqq \{x \in C : \phi(x) < \xi\} \] and \[ E_\xi \coloneqq \{x \in C : \phi(x) \le \xi\} \] are Borel subsets of $X$. \end{theorem} \begin{proof} % Let % \begin{IEEEeqnarray*}{rCl} % x \prec y&:\iff& x,y \in A \land \phi(x) < \phi(y)\\ % &\iff& x,y \in A \land y \not\le_\phi^\ast x. % \end{IEEEeqnarray*} % Since $A$ is analytic, % this relation is analytic and wellfounded on $X$. % By \yaref{thm:kunenmartin} % we get $\rho(\prec) < \omega_1$. % Thus $\sup \{\phi(x) : x \in A\} < \omega_1$. % % Since $D_\xi = \bigcup_{\eta < \xi} E_\xi$, % it suffices to check $E_\xi \in \Sigma_1^1(X)$. % If $\alpha = \sup \{\phi(x) : x \in C\}$, % we have $E_\xi = E_\alpha$ for all $\alpha < \xi < \omega_1$. \todo{TODO: Copy from official notes} \end{proof} \section{Abstract Topological Dynamics} \begin{definition} Let $T$ be a topological group\footnote{usually $T = \Z$ with the discrete topology} and let $X$ be a compact metrizable space. A \vocab{flow} $(X, T)$, sometimes denoted $T \acts X$ is a continuous action \begin{IEEEeqnarray*}{rCl} T \times X&\longrightarrow & X \\ (t,x) &\longmapsto & tx. \end{IEEEeqnarray*} A flow is \vocab{minimal} iff every orbit is dense. $(Y,T)$ is a \vocab{subflow} of $(X,T)$ if $Y \subseteq X$ and $Y$ is invariant under $T$, i.e.~$\forall t \in T,y \in Y.~ty \in Y$. A flow $(X,T)$ is \vocab{isometric} iff there is a metric $d$ on $X$ such that for all $t \in T$ the map \begin{IEEEeqnarray*}{rCl} a_t\colon X &\longrightarrow & X \\ x &\longmapsto & tx \end{IEEEeqnarray*} is an \vocab{isometry}, i.e.~$\forall t \in T.~\forall x,y \in X.~d(a_t(x),a_t(y)) = d(x,y)$. If $(X,T)$ is a flow, then a pair $(x,y)$, $x \neq y$ is \vocab{proximal} iff \[ \exists z \in X.~\exists (t_n)_{n < } \in T^{\omega}.~t_n x \xrightarrow{n \to \infty} z \land t_n y \xrightarrow{n \to \infty} z. \] A flow is \vocab{distal} iff it has no proximal pair. \end{definition} \begin{remark} Note that a flow is minimal iff it has no proper subflows. \end{remark} % \begin{example} % Recall that $S_1 = \{z \in \C : |z| = 1\}$. % Let $X = S_1$, $T = S_1$ % $(\alpha,\beta) \mapsto \alpha + \beta$ is isometric. % % TODO: In the official notes it says \alpha + \beta, but this is no group action. % % Maybe \alpha * \beta ? % \end{example} \begin{definition} Let $X,Y$ be compact metric spaces and $\pi\colon (X,T) \to (Y,T)$ a factor map. Then $(X,T)$ is an \vocab{isometric extension} of $(Y,T)$ if there is a real valued $\rho$ defined on $\{(x_1,x_2) \in X^2 : \pi(x_1) = \pi(x_2)\}$ such that \begin{enumerate}[(a)] \item $\rho$ is continuous. \item For each $y \in Y$, $\rho$ is a metric on the fibre $X_y \coloneqq \{x \in X: \pi(x) = y\}$. \item $\forall t \in T.~\rho(tx_1,tx_2) = \rho(x_1,x_2)$. \item $\forall y,y' \in Y.~$ the metric spaces $(X_y, \rho)$ and $(X_{y'}, \rho)$ are isometric. \end{enumerate} \end{definition} \begin{remark} A flow is isometric iff it is an isometric extension of the trivial flow, i.e.~the flow acting on a singleton. % TODO THINK ABOUT THIS! \end{remark} \begin{proposition} An isometric extension of a distal flow is distal. \end{proposition} \begin{proof} Let $\pi\colon X\to Y$ be an isometric extension. Towards a contradiction, suppose that $x_1,x_2 \in X$ are proximal. Take $z \in X$ and $(g_n) \in T^{\omega}$ such that $g_n x_1 \to z$ and $g_n x_2 \to z$. Then $g_n \pi(x_1) \to \pi(z)$ and $g_n \pi(x_2) \to \pi(z)$, so by distality of $Y$ we have $\pi(x_1) = \pi(x_{2})$. Then $\rho(g_n x_1, g_n x_2)$ is defined and equal to $\rho(x_1,x_2)$. By the continuity of $\rho$, we get $\rho(g_n x_1, g_n x_2) \to \rho(z,z) = 0$. Therefore $\rho(x_1,x_2) = 0$. Hence $x_1 = x_2$ $\lightning$. \end{proof} \begin{definition} Let $\Sigma = \{(X_i, T) : i \in I\} $ be a collection of factors of $(X,T)$. % TODO State precise definition of a factor Let $\pi_i\colon (X,T) \to (X_i, T)$ denote the factor map. Then $(X, T)$ is the \vocab{limit} of $\Sigma$ iff \[ \forall x_1,x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2). \] % TODO think about abstract nonsense \end{definition} \begin{proposition} A limit of distal flows is distal. \end{proposition} \begin{proof} Let $(X,T)$ be a limit of $\Sigma = \{(X_i, T) : i \in I\}$. Suppose that each $(X_i, T)$ is distal. If $(X,T)$ was not distal, then there were $x_1, x_2, z \in X$ and a sequence $(g_n)$ in $T$ with $g_n x_1 \to z$ and $g_n x_2 \to z$. Take $i \in I$ such that $\pi_i(x_1) \neq \pi_i(x_2)$. But then $g_n \pi_i(x_1) \to \pi_i(z)$ and $g_n \pi_i(x_2) \to \pi_i(z)$, which is a contradiction since $(X_i, T)$ is distal. \end{proof}