\lecture{13}{2023-11-08}{} \gist{% % Recap $\LO = \{x \in 2^{\N\times \N} : x \text{ is a linear order}\} $. $\LO \subseteq 2^{\N \times \N}$ is closed and $\WO = \{x \in \LO: x \text{ is a wellordering}\} $ is coanalytic in $\LO$. % End Recap }{} Another way to code linear orders: Consider $(\Q, <)$, the rationals with the usual order. We can view $2^{\Q}$ as the space of linear orders embeddable into $\Q$, by associating a function $f\colon \Q \to \{0,1\}$ with $(f^{-1}(\{1\}), <)$. \begin{lemma} Any countable ordinal embeds into $(\Q,<)$. \end{lemma} \begin{proof}[sketch] Use transfinite induction. Suppose we already have $\alpha \hookrightarrow (\Q, <)$, we need to show that $\alpha +1 \hookrightarrow (\Q, <)$. Since $(0,1) \cap \Q \cong \Q$, we may assume $\alpha \hookrightarrow ((0,1), <)$ and can just set $\alpha \mapsto 2$. For a limit $\alpha$ take a countable cofinal subsequence $\alpha_1 < \alpha_2 < \ldots \to \alpha$. Then map $[0,\alpha_1)$ to $(0,1)$ and $[\alpha_i, \alpha_{i+1})$ to $(i,i+1)$. \end{proof} \begin{definition}[\vocab{Kleene-Brouwer ordering}] Let $(A,<)$ be a linear order and $A$ countable. We define the linear order $<_{KB}$ on $A^{<\N}$ as follows: Let \[ s = (s_0,\ldots,s_{m-1}), t = (t_0, \ldots, t_{n-1}). \] We set $s < t$ iff \begin{itemize} \item $(s \supsetneq t)$ or \item $s_i < t_i$ for the minimal $i$ such that $s_i \neq t_i$. \end{itemize} \end{definition} \begin{proposition} Suppose that $(A, <)$ is a countable well ordering. Then for a tree $T \subseteq A^{<\N}$ on $A$, Then $T$ is well-founded iff $(T, <_{KB}\defon{T})$ is well ordered. \end{proposition} \begin{proof} \gist{% If $T$ is ill-founded and $x \in [T]$, then for all $n$, we have $x\defon{n+1} <_{KB} x\defon{n}$. Thus $(T, <_{KB}\defon{T})$ is not well ordered. Conversely, let $<\defon{KB}$ be not a well-ordering on $T$. Let $s_0 >_{KB} s_1 >_{KB} s_2 >_{KB} \ldots$ be an infinite descending chain. We have that $s_0(0) \ge s_1(0) \ge s_2(0) \ge \ldots$ stabilizes for $n > n_0$. Let $a_0 \coloneqq s_{n_0}(0)$. Now for $n \ge n_0$ we have that $s_n(0)$ is constant, hence for $n > n_0$ the value $s_{n}(1)$ must be defined. Thus there is $n_1 \ge n_0$ such that $s_n(1)$ is constant for all $n \ge n_1$. Let $a_1 \coloneqq s_{n_1}(1)$ and so on. Then $(a_0,a_1,a_2, \ldots) \in [T]$. }{easy} \end{proof} \begin{theorem}[Lusin-Sierpinski] The set $\LO \setminus \WO$ (resp.~$2^{\Q} \setminus \WO$) is $\Sigma_1^1$-complete. \end{theorem} \begin{proof} We will find a continuous function $f\colon \Tr \to \LO$ such that \gist{% \[ x \in \WF \iff f(x) \in \WO \] (equivalently $x \in \IF \iff f(x) \in \LO \setminus \WO$). This suffices, since $\IF \subseteq \Tr$ is $\Sigma^1_1$-complete }{ $f^{-1}(\LO \setminus \WO) = \IF$. This suffices } (see \yaref{cor:ifs11c}). Fix a bijection $b\colon \N \to \N^{<\N}$. \begin{idea} For $T \in \Tr$ consider $<_{KB}\defon{T}$. \end{idea} Let $\alpha \in \Tr$. For $m,n \in \N$ define $f(\alpha)(m,n) \coloneqq 1$ (i.e.~$m \le_{f(\alpha)} n$) iff \begin{itemize} \item $\alpha(b(m)) = \alpha(b(n)) = 1$ and $b(m) \le_{KB} b(n)$ (recall that we identified $\Tr$ with a subset of ${2^{\N}}^{<\N}$), or \item $\alpha(b(m)) = 1$ and $\alpha(b(n)) = 0$ or \item $\alpha(b(m)) = \alpha(b(n)) = 0$ and $m \le n$. \end{itemize} Then $\alpha \in \WF \iff f(\alpha) \in \WO$ and $f$ is continuous. \end{proof} % TODO: new section? \gist{% Recall that a \vocab{rank} on a set $C$ is a map $\phi\colon C \to \Ord$. \begin{example} \begin{IEEEeqnarray*}{rCl} \otp \colon \WO &\longrightarrow & \Ord \\ x &\longmapsto & \text{the unique $\alpha \in \Ord$ such that $x \cong \alpha$}. \end{IEEEeqnarray*} \end{example} }{} \begin{definition} A \vocab{prewellordering} $\preceq$ on a set $C$ is a binary relation that is \begin{itemize} \item reflexive, \item transitive, \item total (any two $x,y$ are comparable), \item $\prec$ \gist{($x \prec y \iff x \preceq y \land y \not\preceq x$)}{} is well-founded, in the sense that there are no descending infinite chains. \end{itemize} \end{definition} \begin{remark} \begin{itemize} \item A prewellordering may not be a linear order since it is not necessarily antisymmetric. %\item The linearly ordered wellfounded sets are exactly the wellordered sets. \item Modding out $x \sim y :\iff x \preceq y \land y \preceq x$ turns a prewellordering into a wellordering. \end{itemize} \end{remark} We have the following correspondence between downwards-closed ranks and prewellorderings: \begin{IEEEeqnarray*}{rCl} \text{ranks}&\longrightarrow & \text{prewellorderings} \\ (\phi\colon C \to \Ord) &\longmapsto & (x \le_{\phi} y :\iff \phi(x) \le \phi(y), x,y \in C)\\ \phi_{\preceq}&\longmapsfrom& \preceq, \end{IEEEeqnarray*} where $\phi_\preceq(x)$ is defined as \gist{\begin{IEEEeqnarray*}{rCl} \phi_{\preceq}(x) &\coloneqq &0 \text{ if $x$ is minimal},\\ \phi_{\preceq}(x) &\coloneqq & \sup \{\phi_{\preceq}(y) + 1 : y \prec x\}, \end{IEEEeqnarray*} i.e.}{} \[ \phi_{\preceq}(x) = \otp\left(\faktor{\{y \in C : y \prec x\}}{\sim}\right). \] \begin{definition} Let $X$ be Polish and $C \subseteq X$ coanalytic. Then $\phi\colon C \to \Ord$ is a \vocab[Rank!$\Pi^1_1$-rank]{$\Pi^1_1$-rank} provided that $\le^\ast$ and $<^\ast$ are coanalytic, where $x \le^\ast_{\phi} y$ iff \begin{itemize} \item $y \in X \setminus C \land x \in C$ or \item $x,y \in C \land \phi(x) \le \phi(y)$ \end{itemize} and similarly for $<^\ast_{\phi}$. \end{definition}