\ctutorial{03}{2023-10-31}{} % 15 / 16 \begin{remark} $F_\sigma$ stands for ferm\'e sum denumerable. \end{remark} \subsection{Exercise 2} (b) Let $f(x^{(i)})$ be a sequence in $f(X)$. Suppose that $f(x^{(i)}) \to y$. We have that $f^{-1} = \pi_{\text{odd}}$ is continuous. Then $\pi_{\text{odd}}(f(x^{(i)}) \to \pi_{\text{odd}}(y)$. Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$. \subsection{Exercise 3} \begin{example} Consider \begin{IEEEeqnarray*}{rCl} f\colon \R &\longrightarrow & [0,1] \\ \frac{p}{q} &\longmapsto & \frac{1}{q}\\ \R \setminus \Q \ni x &\longmapsto & 0 \end{IEEEeqnarray*} Then $\osc_f(\frac{p}{q}) = \frac{1}{q}$ and $\osc_f(x) = 0$ for $x \not\in \Q$. \end{example} \begin{definition} We say that $f\colon X \to Y$ is continuous at $a \in X$, if for $N$ a neighbourhood of $f(a)$ (i.e.~there exists $f(a) \in U \overset{\text{open}}{\subseteq} N$, then $f^{-1}(N)$ is a neighbourhood of $a$. \end{definition} \begin{theorem}[Kuratowski] Let $X$ be metrizable, $Y$ completely metrizable, $f\colon S \to Y$ continuous. Then $f$ can be extended to a continuous fnuction $f_n$ on a $G_\delta$ set $G$ with $S \subseteq G \subseteq \overline{G}$. \end{theorem} \begin{proof} Let $G \coloneqq \overline{S} \cap \{x \in X | \osc_f(x) = 0\}$. Clearly $S \subseteq G$ as $f$ is continouos on $f$. \begin{claim} $G$ is $G_\delta$ \end{claim} \begin{subproof} $\overline{S}$ is closed and \[ \bigcap_{n \ge 1} \{x : \osc_f(x) <\frac{1}{n}\} \] is an intersection of open sets. \end{subproof} is an intersection of open sets. For $x \in G$, as $x \in \overline{S}$, there exists $(x_n)_{x_n < \omega}$, $x_n \in S_$ such that $x_n \to x$. We have that $(f(x_n))_n$ is Cauchy, as $\osc_f(x) = 0$. % TODO \todo{Something is missing here} \end{proof} \begin{corollary} Let $X$ be Polish and $Y \subseteq X$ Polish. Then $Y$ is $G_{\delta}$. \end{corollary} \begin{proof} Consider the identity $f\colon Y \hookrightarrow X$. Then $f$ can be extended to a $G_{\delta}$ set. $f$ and $\id_G$ agree on $Y$. Hence $Y \subseteq G \subseteq \overline{Y}$. $Y$ is dense in $G$ and $\cod(f)$ is ltd.\todo{????} So $f = \id_G$, i.e.~$G = Y$. \end{proof} \subsection{Exercise 4} Let $C$ be the subspace of $2^{\omega}$ consisting of sequences with finitely many $1$s. We want to show that $C \cong \Q$. Go to the right in the even digits, go to the left for the odd digits, i.e.~let $C = (1,-1,1,-1, \ldots)$ and set $x < y$ iff $C \cdot x <_{\text{lex}} C \cdot y$.