\tutorial{12}{2024-01-16T12:00}{} \begin{question} What is an example of a flow with a dense orbit that isn't minimal. \end{question} \begin{example} Consider the Bernoulli shift. $T = \Z \acts \{0,1\}^{\Z}$. $(0)$ is a subflow. Let $\phi\colon \Z \to \{0,1\}^{< \omega}$ be an enumeration of all finite binary sequences. Consider the concatenation \[ \ldots \concat \phi(-2) \concat \phi(-1) \concat \phi(0) \concat \phi(1) \concat \phi(2) \concat \ldots \] \end{example} \subsection{Sheet 11} \begin{fact} If $A$, $B$ are topological spaces, then $f\colon A \to B$, is continuous iff $f(\overline{S}) \subseteq \overline{f(S)}$ for all $S \subseteq A$. \end{fact} \begin{proof} Suppose that $f$ is continuous. Take $a \in \overline{S}$. Take any $f(a) \in U \overset{\text{open}}{\subseteq} B$. $f^{-1}(U)$ is open and $f^{-1}(U) \ni a$. So there exists $s \in S$ such that $s \in f^{-1}(U)$ and $f(s) \in U$. On the other hand suppose $f(\overline{S}) \subseteq \overline{f(S)}$ for all $S \subseteq A$. It suffices to show that preimages of closed sets are closed. Let $V \overset{\text{closed}}{\subseteq} B$. Then $f(\overline{f^{-1}(V)}) \subseteq \overline{ff^{-1}(V)} \subseteq V$, hence \[ \overline{f^{-1}(V)} \subseteq f^{-1}(f(\overline{f^{-1}(V)})) \subseteq f^{-1}(V). \] \end{proof} \begin{fact} \label{fact:t12:2} Let $A$ be compact and $B$ Hausdorff. Let $f\colon A \to B$ be continuous and $S \subseteq A$. Then $f(\overline{S}) = \overline{f(S)}$. \end{fact} \begin{subproof} We have already shown $f(\overline{S}) \subseteq \overline{f(S)}$. Since $A$ is compact, $f(\overline{S})$ is compact and since $B$ is Hausdorff, compact subsets of $B$ are closed. \end{subproof} \nr 1 Let $(X,T)$ be a flow and $G = E(X,T)$ its Ellis semigroup. Let $d$ be a compatible metric on $X$. \begin{enumerate}[(a)] \item Let $f_0 \in X^X$ be a continuous function. Then $L_{f_0}\colon X^X \to X^X, f \mapsto f_0 \circ f$ is continuous. Consider $\{f : f_0 \circ f \in U_{\epsilon}(x,y)\}$. We have \begin{IEEEeqnarray*}{rCl} &&f_0 \circ f \in U_{\epsilon}(x,y)\\ &\iff& d(x, f_0(f(y))) < \epsilon\\ &\iff& f(y) \in f_0^{-1}(B_{\epsilon}(x))\\ &\iff& f \in \bigcup_{\tilde{x} \in f_0^{-1}(B_{\epsilon}(x))}U_{\epsilon_{\tilde{x}}}(\tilde{x}, y) \end{IEEEeqnarray*} where $\epsilon_{\tilde{x}}$ is such that $B_{\epsilon_{\tilde{x}}}(\tilde{x}) \subseteq f_0^{-1}(B_{\epsilon}(x))$. (This is possible since $f_0$ is continuous, hence $f_0^{-1}(B_{\epsilon}(x))$ is open.) Clearly the RHS is open. \item If $f_0$ is not continuous, then $L_{f_0}$ is in general not continuous: Let $X = [0,1]$, and $f_0 \coloneqq \One_{\Q}$. Consider $U \coloneqq U_{\frac{1}{2}}(1,1)$. Then $\{f : f_0 \circ f \in U\} = \{f : f(1) \in \Q\}$ is not open. \item Let $x_0 \in X$. The evaluation map \begin{IEEEeqnarray*}{rCl} \ev_{x_0}\colon X^X &\longrightarrow & X \\ f &\longmapsto & f(x_0) \end{IEEEeqnarray*} is continuous: Let $y \in X$ and consider $B_\epsilon(y) \subseteq X$. By definition $\ev_{x_0}(B_{\epsilon}(y)) = U_{\epsilon}(y,x_0)$ is open. \item For any $x \in X$, we have $Gx = \overline{Tx}$: By definition $G = \overline{\{x \mapsto tx : t \in T\}}$. Consider $\ev_x \colon X^X \to X$. $X^X$ is compact and $X$ is Hausdorff. Hence we can apply \yaref{fact:t12:2}. \item Let $x_0 \neq x_1 \in X$. Then $(x_0,x_1)$ is a proximal pair iff $d(gx_0,gx_1) = 0$ for some $g \in G$: Let $(x_0,x_1)$ be proximal. Consider $(\ev_{x_0}, \ev_{x_1})\colon X^X \to X \times X$ and $d\colon X \times X \to \R$. Both maps are continuous. Consider $D \coloneqq \{d(gx_0, gx_1) : g \in G\}$. $G$ is compact, hence $D$ is compact. $D$ contains elements arbitrarily close to $0$ and $D$ is closed, so $0 \in D$. On the other hand let $g \in G$ be such that $d(gx_0,gx_1) = 0$. We want to show that $(x_0,x_1)$ is proximal. As $gx_0 = gx_1$, we have that there eixsts $\epsilon > 0$ such that $g \in U_{\epsilon}(gx_0, x_1) \cap U_\epsilon(gx_1, x_0)$ As $g \in \overline{T}$ for all $\epsilon > 0$, there exists $t \in T$ with $t \in U_\epsilon(gx_0,x_1) \cap U_\epsilon(gx_1,x_0)$. Hence $d(tx_1, gx_0) < \epsilon$ and $d(tx_0, gx_1) < \epsilon$. \item $(X,T)$ contains a minimal subflow: We apply Zorn's lemma. It suffices to show that a chain of subflows $X \supseteq X_1 \supseteq X_2 \supseteq \ldots$ has a limit. We claim that $(\bigcap_n X_n, T)$ is a subflow, i.e.~ $\bigcap_n X_n$ is $T$-invariant. Indeed, since all the $X_n$ are $T$-invariant, we have $T(\bigcap_n X_n) \subseteq \bigcap_n TX_n \subseteq \bigcap_n X_n$. It is clear that $\bigcap_{n} X_n$ is closed. Since $X$ is compact the intersection is also non-empty. \item Show that if $T$ is a compact metrisable topological flow, then $(X,T)$ is equicontinuous. Suppose that $(X,T)$ is not equicontinuous. Then there exists $\epsilon> 0$ such that \[\forall \delta > 0.~ \exists x,y \in X, t \in Y.~d(x,y) < \delta \land d(tx,ty) \ge \epsilon.\] Take $\delta_n = \frac{1}{n}$. Choose bad $x_n$, $y_n$, $t_n$. Since $X$ and $T$ are compact, wlog.~$x_n \to x'$, $y_n \to y'$, $t_n \to t'$. So $d(t'x', t'y') > \epsilon$, but $x' = y'$ $\lightning$ \end{enumerate}