\tutorial{01}{2023-10-17}{} \begin{fact} A countable product of separable spaces $(X_n)_{n \in \N}$ is separable. \end{fact} \begin{proof} Choose a countable dense subset $D_n \subseteq X_n$ Fix some point $(a_1,a_2,\ldots) \in \prod_n X_n$ and consider $\bigcup_{i \in \N} \prod_{n \le i} D_n \times \prod_{n > i} \{a_n\}$. \end{proof} \begin{fact} \begin{itemize} \item Let $X$ be a topological space. Then $X$ \nth{2} countable $\implies$ X separable. \item If $X$ is a metric space and separable, then $X$ is \nth{2} countable. \end{itemize} \end{fact} \begin{proof} For the first point, choose some point from every basic open set. For the second point consider balls of rational radius around the points of a countable dense subset. \end{proof} \begin{definition} A topological space is \vocab{Lindelöf} iff every open cover has a countable subcover. \end{definition} \begin{fact} Let $X$ be a metric space. If $X$ is Lindelöf, then it is \nth{2} countable. \end{fact} \begin{proof} For all $q \in \Q$ consider the cover $B_q(x), x \in X$ and choose a countable subcover. The union of these subcovers is a countable base. \end{proof} \begin{fact} Let $X$ be a topological space. If $X$ is \nth{2} countable, then it is Lindelöff. \end{fact} \begin{proof} Let $A_0, A_1,\ldots$ be a countable base. Let $\{U_i\}_{i \in I}$ be a cover. Consider $J \coloneqq \{j : \exists i \in I.~A_j \in U_i\}$. For every $j \in J$ choose a $U_i$ such that $A_j \subseteq U_j$. Let $I' \subseteq I$ be the subset of chosen indices. Then $\{U_i\}_{i \in I'}$ is a countable subcover. \end{proof} \begin{remark} For metric spaces the notions of being \nth{2} countable, separable and Lindelöf coincide. In arbitrary topological spaces, Lindelöf is the weakest of these notions. \end{remark} \begin{definition}+ A metric space $X$ is \vocab{totally bounded} iff for every $\epsilon > 0$ there exists a finite set of points $x_1,\ldots,x_n$ such that $X = \bigcup_{i=1}^n B_{\epsilon}(x_i)$. \end{definition}