\lecture{22}{2024-01-16}{} \begin{refproof}{thm:21:xnmaxiso} We have the following situation: % https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIl0sWzEsMSwiWF97bn0iXSxbMSwyLCJYX3tuLTF9Il0sWzIsMSwiWSJdLFswLDEsIlxccGlfe259Il0sWzEsMiwiXFx0ZXh0e2lzb21ldHJpY30iLDFdLFswLDIsIlxccGlfe24tMX0iLDIseyJjdXJ2ZSI6Mn1dLFswLDMsIlxccGknIiwwLHsiY3VydmUiOi0zfV0sWzMsMSwiaCIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFszLDIsIlxcb3ZlcmxpbmV7Z30sIFxcdGV4dHsgbWF4LiBpc29tLn0iLDAseyJjdXJ2ZSI6LTJ9XV0= \[\begin{tikzcd} X \\ & {X_{n}} & Y \\ & {X_{n-1}} \arrow["{\pi_{n}}", from=1-1, to=2-2] \arrow["{\text{isometric}}"{description}, from=2-2, to=3-2] \arrow["{\pi_{n-1}}"', curve={height=12pt}, from=1-1, to=3-2] \arrow["{\pi'}", curve={height=-18pt}, from=1-1, to=2-3] \arrow["h"', dashed, from=2-3, to=2-2] \arrow["{\overline{g}, \text{ max. isom.}}", curve={height=-12pt}, from=2-3, to=3-2] \end{tikzcd}\] We want to show that this tower is normal, i.e.~the isometric extensions are maximal isometric extension. \gist{% Let $Y$ be a maximal isometric extension of $X_{n-1}$ in $X$ and let $\overline{g} = \pi^n_{n-1} \circ h$. % factor map? We need to show that $h$ is an isomorphism. Towards a contradiction assume that $h$ is not an isomorphism. Then there are $x,x' \in X$ with $\pi'(x) \neq \pi'(x')$ but $\pi_n(x) = \pi_n(x') =t \in X_n$. Then $h^{-1}(t) \ni \pi'(x), \pi'(x')$. By a \yaref{lem:lec20:1} there is a sequence $(x_k)$ in $X$ with $\pi_{n-1}(x_k) = \pi_{n-1}(x) = \pi_{n-1}(x')$ for all $k$, such that $F(x_k, x) \to 0$ and $F(x_k, x') \to 0$. Let $\rho$ be a metric witnessing that $\overline{g}$ is an isometric extension, i.e.~ $\rho$ is defined on $\bigcup_{x \in X_{n-1}} (\overline{g}^{-1}(x))^2 \overset{\text{closed}}{\subseteq} Y \times Y$, continuous and $\rho(Ta, Tb) = \rho(a,b)$ for $\overline{g}(a) = \overline{g}(b)$. For $a,b \in X$ such that \[ \overline{g}(\pi'(a)) = \overline{g}(\pi'(b)) \] define \[ R(a,b) \coloneqq \rho(\pi'(a), \pi'(b)). \] \begin{itemize} \item For any two out of $x,x',(x_k)$, $R$ is defined. \item $R(x,x_k) = R(\tau^m x, \tau^m x_k)$ for all $m$. \item $F(x,x_k) \xrightarrow{k\to \infty} 0$, so there is a sequence $(m_k)$ such that \[d(\tau^{m_k}x, \tau^{m_k} x_k) \xrightarrow{k \to \infty} 0.\] \end{itemize} By continuity of $\rho$, we have that $R(x,x_k) = R(\tau^{m_k} x, \tau^{m_k} x_k) \xrightarrow{k \to \infty} 0$, and similarly $R(x',x_k) \to 0$. Hence $R(x,x') \xrightarrow{k \to \infty} 0$ by the triangle inequality. But $x$ and $x'$ don't depend on $k$, hence $R(x,x') = 0$. It follows that $\pi'(x) = \pi'(x')$ $\lightning$. }{ \begin{itemize} \item $Y$ max.~isometric extension of $X_{n-1}$ in $X$ and $\overline{g} = \pi^n_{n-1} \circ h$. \item $h$ isomorphism. Suppose not, then $\exists y_0,y_1 \in X.~\pi'(y_0) \neq \pi'(y_1), \pi_n(y_0) = \pi_n(y_1) = t$. \item Apply \yaref{lem:lec20:1} $\leadsto$ sequence $(x_k)$ in $X$, such that $\pi_{n-1}(x_k) = \pi_{n-1}(y_i)$, $F(x_k,y_i) \to 0$. \item $\rho\colon Y \times_{X_{n-1}} Y \to \R$ witnessing isometric. \item $R(a,b) \coloneqq \rho(\pi'(a), \pi'(b))$ for $a,b \in X$ with $\overline{g}(\pi'(a)) = \overline{g}(\pi'(b))$. (defined for any two of $x_k$, $y_0$, $y_1$, $\tau$-equivariant) \item $F(y_0,x_{k}) \to 0$, so $d(\tau^{m_k} y_0, \tau^{m_k} x_k) \to 0$. \item $R(y_0,x_k) \to 0$, hence $\underbrace{R(y_0,y_1)}_{\text{no } k} \to 0$ $\lightning$. \end{itemize} } \end{refproof} \begin{theorem}[Beleznay-Foreman] \begin{enumerate}[(1)] \item For every $\eta < \omega_1$, there is a distal minimal flow of order $\eta$.%\footnote{For second countable spaces this is the best we can get.} \item The set of distal minimal flows is $\Pi^1_1$-complete. \item The order is a $\Pi^1_1$-rank. In particular $\{\text{distal minimal flows of rank } < \alpha\}$ is Borel for all $\alpha < \omega_1$. \end{enumerate} \end{theorem} \todo{This was already stated as \yaref{thm:beleznay-foreman} in lecture 16 and should not have two numbers.} A few words on the proof: Let $\mathbb{K} = S^1$ and $I$ a countable linear order. Let $\mathbb{K}^I$ be the product of $|I|$ many $\mathbb{K}$, $\mathbb{K}^{ j+1.~z_k = 1,\\ &&d(f^{k_m}(\overline{x_m}), f^{k_m}(\overline{z})) < \epsilon \text{ and }\\ &&d(f^{k_n}(\overline{x_n}), f^{k_n}(\overline{z})) < \epsilon\\ &&\} \end{IEEEeqnarray*} Beleznay and Foreman show that this is open and dense.% % TODO similarities to the lemma used today } \end{itemize} \end{proof}