\lecture{08}{2023-11-10}{} \todo{put this lemma in the right place} \begin{lemma}[Lemma 2] Let $(X, \cT)$ be a Polish space. Let $\cT_n \supseteq \cT$ be Polish with $\cB(X, \cT_n) = \cB(X, \cT)$. Let $\cT_\infty$ be the topology generated by $\bigcup_n \cT_n$. Then $(X, \cT_\infty)$ is Polish and $\cB(X, \cT_\infty) = \cB(X, \cT)$. \end{lemma} \begin{proof} Let $Y = \prod_{n \in \N} (X, \cT_n)$. Then $Y$ is Polish. Let $\delta\colon (X, \cT_\infty) \to Y$ defined by $\delta(x) = (x,x,x,\ldots)$. \begin{claim} $\delta$ is a homeomorphism. \end{claim} \begin{subproof} Clearly $\delta$ is a bijection. We need to show that it is continuous and open. Let $U \in \cT_i$. Then \[ \delta^{-1}(D \cap \left( X \times X \times \ldots\times U \times \ldots) \right)) = U \in \cT_i \subseteq \cT_\infty, \] hence $\delta$ is continuous. Let $U \in \cT_\infty$. Then $U$ is the union of sets of the form \[ V = U_{n_1} \cap U_{n_2} \cap \ldots \cap U_{nu} \] for some $n_1 < n_2 < \ldots < n_u$ and $U_{n_i} \in \cT_i$. Thus is suffices to consider sets of this form. We have that \[ \delta(V) = D \cap (X \times X \times \ldots \times U_{n_1} \times \ldots \times U_{n_2} \times \ldots \times U_{n_u} \times X \times \ldots) \overset{\text{open}}{\subseteq} D. \] \end{subproof} This will finish the proof since \[ D = \{(x,x,\ldots) \in Y : x \in X\} \overset{\text{closed}}{\subseteq} Y \] Why? Let $(x_n) \in Y \setminus D$. Then there are $i < j$ such that $x_i \neq x_j$. Take disjoint open $x_i \in U$, $x_j \in V$. Then \[(x_n) \in X \times X \times \ldots \times U \times \ldots \times X \times \ldots \times V \times X \times \ldots\] is open in $Y\setminus D$. Hence $Y \setminus D$ is open, thus $D$ is closed. It follows that $D$ is Polish. \end{proof} \subsection{Parametrizations} %\todo{choose better title} Let $\Gamma$ denote a collection of sets in some space. For us $\Gamma$ will be one of $\Sigma^0_\xi(X), \Pi^0_\xi(X), \Delta^0_\xi(X), \cB(X)$, where $X$ is a metrizable, usually second countable space. \begin{definition} We say that $\cU \subseteq Y \times X$ is \vocab{$Y$-universal} for $\Gamma(X)$ / $\cU$ \vocab{parametrizes} $\Gamma(X)$ iff: \begin{itemize} \item $\cU \in \Gamma$, \item $\{U_y : y \in Y\} = \Gamma(X)$. \end{itemize} \end{definition} \begin{example} Let $X = \omega^\omega$, $Y = 2^{\omega}$ and consider $\Gamma = \Sigma^0_{\omega+5}(\omega^\omega)$. We will show that there is a $2^{\omega}$-universal set for $\Gamma$. \end{example} \begin{theorem} \label{thm:cantoruniversal} Let $X$ be a separable, metrizable space. Then for every $\xi \ge 1$, there is a $2^{\omega}$-universal set for $\Sigma^0_\xi(X)$ and similarly for $\Pi^0_\xi(X)$. \end{theorem} \begin{proof} Note that if $\cU$ is $2^{\omega}$ universal for $\Sigma^0_\xi(X)$, then $(2^{\omega} \times X) \setminus \cU$ is $2^{\omega}$-universal for $\Pi^0_\xi(X)$. Thus it suffices to consider $\Sigma^0_\xi(X)$. First let $\xi = 1$. We construct $\cU \overset{\text{open}}{\subseteq} 2^{\omega} \times X$ such that \[ \{U_y : y \in 2^\omega\} = \Sigma^0_1(X). \] Let $(V_n)$ be a basis of open sets of $X$. For all $y \in 2^\omega$ and $x \in X$ put $(y,x) \in \cU$ iff $x \in \bigcup \{V_n : y_n = 1\}$. $\cU$ is open. For any $V \overset{\text{open}}{\subseteq} X$, define $y \in 2^\omega$ by $y_n = 1$ iff $V_n \subseteq V$. Then $\cU_y = V$. Now suppose that there exists a $2^{\omega}$-universal set for $\Sigma^0_{\eta}(X)$ for all $\eta < \xi$. Fix $\xi_0 \le \xi_1 \le \ldots < \xi$ such that $\xi_n \to \xi$ if $\xi$ is a limit, or $\xi_n = \xi'$ if $\xi = \xi' +1$ is a successor. Recall that $\eta_1 \le \eta_2 \implies \Pi^0_{\eta_1}(X) \subseteq \Pi^0_{\eta_2}(X)$. Note that if $A = \bigcup_n A_n$, with $A_n \in \Pi^0_{\eta_n}(X)$ for some $\eta_n < \xi$, we also have $A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$. We construct a $(2^\omega)^\omega \cong 2^\omega$-universal set for $\Sigma^0_\xi(X)$. For $(y_n) \in (2^\omega)^\omega$ and $x \in X$ we set $((y_n), x) \in \cU$ iff $\exists n.~(y_n, x) \in U_{\xi_n}$, i.e.~iff $\exists n.~x \in (U_{\xi_n})_{y_n}$. Let $A \in \Sigma^0_\xi(X)$. Then $A = \bigcup_{n} B_n$ for some $B_n \in \Pi^0_{\xi_n}(X)$. % TODO Furthermore $\cU \in \Sigma^0_{\xi}((2^\omega)^\omega \times X)$. \end{proof} \begin{remark} Since $2^{\omega}$ embeds into any uncountable polish space $Y$ such that the image is closed, we can replace $2^{\omega}$ by $Y$ in the statement of the theorem.% \footnote{By definition of the subspace topology and transfinite induction, $\Sigma^0_\xi(Y)\defon{2^\omega} = \Sigma^0_\xi(2^\omega)$.} \end{remark}