\tutorial{13}{2024-01-23}{} Continuation of sheet 8, exercise 4. % Whiteboard https://wbo.ophir.dev/boards/Dphc7eylJJcIA0WbQsn7jzec1domqyx51gXb5qe6rzw-#263,0,0.5 \begin{definition} Let $X$ be a compact metric space. For $K \subseteq X$ compact and $U \overset{\text{open}}{\subseteq} X$ let \[ S_{K,U} \coloneqq \{f \in \cC(X,X): f(K) \subseteq U\}. \] The \vocab{compact open topology} on $\cC(X,X)$ is the topology that has $S_{K,U}$ as a subbase. \end{definition} \begin{fact} If $X$ is compact, then the compact open topology is the topology induced by the uniform metric $d_\infty$. \end{fact} \begin{proof} Take some $S_{K,U}$. We need to show that this can be written as a union of open $d_{\infty}$-balls. Let $f_0 \in S_{K,U}$. Consider the continuous function $d(-, U^c)$. Since $f_0(K)$ is compact, there exists $\epsilon \coloneqq \min d(f_0(K), U^c)$ and $B_{\epsilon}(f_0) \subseteq S_{K,U}$. On the other hand, consider $B_{\epsilon}(f_0)$ for some $\epsilon > 0$ and $f_0 \in \cC(X,X)$. As $f_0$ is uniformly continuous, there exists $\delta > 0$ such that $d(x,x') < \delta \implies d(f_0(x), f_0(x')) < \frac{\epsilon}{3}$. Cover $X$ with finitely many $\delta$-balls $B_\delta(a_1), \ldots, B_{\delta}(a_k)$. Then \[f_0(\overline{B_{\delta}(a_i)}) \subseteq \overline{f_0(B_{\delta}(a_i)} \subseteq \overline{B_{\frac{\epsilon}{3}}(f_0(a_i))} \subseteq B_{\frac{\epsilon}{2}}(f_0(a_i)).\] For $i \le k$, let $S_i \coloneqq S_{\overline{B_{\delta}(a_i)}, B_{\frac{\epsilon}{2}}(f_0(a_i))}$. Take $\bigcap_{i \le k} S_i$. This is open in the compact open topology and $B_{\epsilon}(f_0) \subseteq \bigcap_{i \le k} S_i$. \end{proof} \begin{claim} $f \in \cC(X,X)$ is surjective iff for all basic open $\emptyset\neq U \subseteq X$ there exists a basic open $\emptyset \neq V \subseteq X$ with $f(\overline{V}) \subseteq U$. Note that we can write this as a $G_\delta$-condition. \end{claim} \begin{subproof} Take $B_\epsilon(f(x_0))\subseteq U$. Then there exists $\delta > 0$ such that $f(B_{\delta}(x_0)) \subseteq B_{\frac{\epsilon}{2}}(f(x_0))$ hence $f(\overline{B_{\delta}(x_0)}) \subseteq B_\epsilon(f(x_0))$. For the other direction take $y \in X$. We want to find a preimage. For every $B_{\frac{1}{n}}(y)$, there exists a basic open set $V_n$ with $f(\overline{V}) \subseteq B_{\frac{1}{n}}(y)$. Take $x_n \in V_n$. Since $X$ is compact, it is sequentially compact, so there exists a converging subsequence. Wlog.~$x_n \to x$, so $f(x_n) \to f(x) = y$. \end{subproof} \begin{claim} $f \in \cC(X,X)$ is injective iff for all basic open $U$,$V$ with $\overline{U} \cap \overline{V} = \emptyset$ we have $f(\overline{U}) \cap f(\overline{V}) = \emptyset$. This is a $G_\delta$-condition, since we can write it as \[ \bigcap_{U,V} S_{\overline{U}, f(\overline{V})^c}. \] \end{claim} \begin{subproof} $\implies$ is trivial. $\impliedby$ follows since for all pairs $x,y \in X$, we can find $x \in U$, $y \in V$ such that $\overline{U} \cap \overline{V} = \emptyset$. \end{subproof} Hence $\Homeo(X,X)$ is $G_\delta$. In particular it is a Polish space. Let $D$ be the set of $\Z$-flows with dense orbit. \begin{claim} $f \in D$ $\iff$ for all basic open $U,V \subseteq X$, there exists $n \in \Z$ such that $f^n(U) \cap V \neq \emptyset$. \end{claim} \begin{subproof} Suppose that the orbit of $x_0 \in X$ is dense. Then there exist $k,l \in \Z$ such that $f^k(x_0)\in U$ and $f^l(x_0) \in V$, so $f^{l-k} U \cap V \neq \emptyset$. For basic open sets $V$ let \[ A_V \coloneqq \{ x \in X: \exists n.~ f^n(x) \in V\}. \] By assumption, all the $A_V$ are dense. Hence $\bigcap_{V}A_V$ is dense by the \yaref{thm:bct}. $A_V = \bigcup_{n \in \Z} f^n(V)$ is open. \end{subproof} \begin{claim} The condition can be written as a $G_\delta$ set. \end{claim} \begin{subproof} For $f_0(U) \cap V \neq \emptyset$ take $u \in U$ such that $f_0(u) \in V$. Then there exists $\epsilon > 0$ such that $B_{\epsilon}(f_0(u)) \subseteq U$, hence $B_{\epsilon}(f_0)$ is an open neighbourhood contained in $\{f : f(U) \cap V \neq \emptyset \} $. For $n = 2$ note that $d(f^2(u), f^2_0(u) \le d(f(f(u)), f_0(f(u))) + d(f_0(f(u)), f_0(f_0(u)))$. The first part can be bounded by $d(f,f_0)$. For the second part, note that there exists $\delta$ such that \[d(a,b) < \delta \implies d(f_0(a), f_0(b)) < \frac{\epsilon}{2}.\] Let $\eta \coloneqq \min \{\delta, \frac{\epsilon}{2}\}$ and consider $d_\infty(f,f_0) < \epsilon$. For other $n$ it is some more work, which is left as an exercise. \end{subproof}