\subsection{Sheet 2} \tutorial{03}{2023-10-31}{} % 15 / 16 \begin{remark} $F_\sigma$ stands for \vocab{ferm\'e sum denumerable}. \end{remark} \nr 1 Let $X$ be a Polish space. Then there exists an injection $f\colon X \to 2^\omega$ such that for each $n < \omega$, the set $f^{-1}(\{(y_n) \in 2^\omega : y_n = 1\})$ is open. Moreover if $V \subseteq 2^{ \omega}$ is closed, then $f^{-1}(V)$ is $G_\delta$. Let $(U_i)_{i < \omega}$ be a countable base of $X$. Define \begin{IEEEeqnarray*}{rCl} f\colon X &\longrightarrow & 2^{\omega} \\ x &\longmapsto & (x_i)_{i < \omega} \end{IEEEeqnarray*} where $x_i = 1$ iff $x \in U_i$ and $x_i = 0$ otherwise. \gist{ Then $f^{-1}(\{y = (y_n) \in 2^\omega | y_n = 1\}) = U_n$ is open. We have that $f$ is injective since $X$ is T1. Let $f\colon X \hookrightarrow 2^\omega$ be such that $f^{-1}(\{y = (y_n) \in 2^\omega | y_n = 1\})$. Let $V \subseteq 2^{\omega}$ be closed. Then $2^{\omega} \setminus V$ is open, i.e.~has the form $\bigcup_{i \in I} ((\prod_{j a_k} \{(a_0,a_1,\ldots,a_{k-1}, b)\} \times \omega^{\omega}. \] In both cases the preimage is open. \item $C \coloneqq 2^{\omega} \setminus f(\omega^\omega)$ is countable and dense in $2^{\omega}$. We have $C = \{x \in 2^{\omega} | x_i = 0 \text{ for all but finitely many $i$}\} = \bigcup_{i < \omega} (2^{i} \times 1^{\omega})$. Clearly this is countable. For denseness take some $x \in 2^\omega$. Let $x^{(n)}$ be defined by $x^{(n)}_i = x_i$ for $i < n$ and $x^{(n)}_i = 0$ for $i \ge n$. Then $x^{(n)} \in C$ for all $n$, and $x^{(n)}$ converges to $x$. \item $f(\omega^\omega)$ is $G_\delta$: We have \begin{IEEEeqnarray*}{rCl} f(\omega^\omega) &=& 2^\omega \setminus \left(\bigcup_{i < \omega} (2^{i} \times 1^{\omega})\right)\\ &=& \bigcap_{i < \omega} \left(2^{\omega} \setminus(2^{i} \times 1^{\omega})\right). \end{IEEEeqnarray*} \item $C$ as in (2) is homeomorphic to $\Q$. Go to the right in the even digits, go to the left for the odd digits, i.e.~let $C = (1,-1,1,-1, \ldots)$ and set $x < y$ iff $C \cdot x <_{\text{lex}} C \cdot y$, where $<_{\text{lex}}$ denotes the lexicographical ordering. Note that the order topology of $<$ on $C$ agrees with the subspace topology from $2^\omega$. By Cantor's theorem for countable, unbounded, dense linear linear orders, we get an order isomorphism $C \leftrightarrow \Q$. This is also a homeomorphism, as the topologies on $C$ and $\Q$ are the respective order topologies. \end{enumerate}