\lecture{24}{2024-01-23}{Combinatorics!} \subsection{Applications to Combinatorics} % Ramsey Theory} \begin{definition} An \vocab{ultrafilter} on $\N$ (or any other set) is a family $\cU \subseteq \cP(\N)$ such that \begin{enumerate}[(1)] \item $X \in \cU \land X \subseteq Y \subseteq \N \implies Y \in \cU$. \item $X,Y \in \cU \implies X \cap Y \in \cU$. \item $\emptyset \not\in \cU$, $\N \in \cU$. \item For all $X \subseteq \N$, we have $X \in \cU \lor \N \setminus X \in \cU$. \end{enumerate} \end{definition} \gist{ \begin{remark} \begin{itemize} \item If $X \cup Y \in \cU$ then $X \in \cU$ or $Y \in \cU$: Consider $((\N \setminus X) \cap (\N \setminus Y) = \N \setminus (X \cup Y)$. \item Every filter can be extended to an ultrafilter. (Zorn's lemma) \end{itemize} \end{remark} }{} \begin{definition} An ultrafilter is called \vocab[Ultrafilter!principal]{principal} or \vocab[Ultrafilter!trivial]{trivial} iff it is of the form \[ \hat{n} = \{X \subseteq \N : n \in X\}. \] \end{definition} \begin{notation} Let $\phi(\cdot )$ be a formula, where the argument is a natural number. Let $\cU$ be an ultrafilter. We write \[ (\cU n) ~ \phi(n) \] for $\{ n \in \N : \phi(n)\} \in \cU$. We say that $\phi(n)$ holds for \vocab{$\cU$-almost all} $n$. \end{notation} \gist{% \begin{observe} Let $\phi(\cdot )$, $\psi(\cdot )$ be formulas. \begin{enumerate}[(1)] \item $(\cU n) ~ (\phi(n) \land \psi(m)) \iff (\cU n) \phi(n) \land (\cU n) \psi(n)$. \item $(\cU n) ~ (\phi(n) \lor \psi(m)) \iff (\cU n) ~ \phi(n) \lor (\cU n) ~ \psi(n)$. \item $(\cU n) ~\lnot \phi(n) \iff \lnot (\cU n)~ \phi(n)$. \end{enumerate} \end{observe} }{} \begin{lemma} \label{lem:ultrafilterlimit} Let $X $ be a compact Hausdorff space. Let $\cU$ be an ultrafilter. Then for every sequence $(x_n)$ in $X$, there is a unique $x \in X$, such that \[ (\cU n)~(x_n \in G) \] for every neighbourhood% \footnote{$G \subseteq X$ is a neighbourhood iff $x \in \inter G$.} $G$ of $x$. \end{lemma} \begin{notation} In this case we write $x = \ulim{\cU}_n x_n$. \end{notation} \begin{refproof}{lem:ultrafilterlimit}\footnote{The proof from the lecture only works for metric spaces.} \gist{ For metric spaces: Whenever we write $X = Y \cup Z$ we have $(\cU n) x_n \in Y$ or $(\cU n) x_n \in Z$. So we can repeatedly chop the space in two pieces, one of them contains $\cU$-almost all $x_n$, Then we restrict to this piece and continue. For this to work, we need a finite collection $\cP_n$ of closed sets for every $n$, such that $\bigcup \cP_n = X$, $C \in \cP_{n+1} \implies \exists C \subseteq D \in \cP_{n}$ and $C_1 \supseteq C_2 \supseteq \ldots$, $C_i \in \cP_i $ $\implies | \bigcap_{i} C_i| = 1$. It is clear that we can do this for metric spaces. }{} See \yaref{thm:uflimit} for the full proof. See \yaref{fact:compactiffufconv} and \yaref{fact:hdifffilterlimit} for a more general statement. \end{refproof} Let $\beta \N$ be the Čech-Stone compactification of $\N$, i.e.~the set of all ultrafilters on $\N$ with the topology given by open sets $V_{A} = \{ p \in \beta\N : A \in P\} $ for $A \subseteq \N$. This is a compact Hausdorff space.% \footnote{cf.~\yaref{fact:bNhd}, \yaref{fact:bNcompact}}% \todo{move facts} We can turn it into a compact semigroup: Consider $+ \colon \N \times \N \to \N$. This gives an operation on principal ultrafilters (we identify $n \in \N$ with the corresponding principal filter). We want to extend this to all of $\beta\N$. Fix the first argument to get a function $\N \to \N, n \mapsto k+n$. For $\cU \in \beta\N$ consider $\ulim{\cU}_n (k+n)$. So for a fixed $k \in \N$ we get $k+ \cdot \colon\beta\N \to \beta\N$, i.e.~$+ \colon \N \times \beta\N \to \beta\N$. Fixing the second coordinate to be $\cV \in \beta\N$, we get a function $+\cV \colon \N \to \beta\N$. For $ \cU \in \beta\N$ consider $\ulim{\cU}_n n + \cV$. This gives $+ \colon \beta\N \times \beta\N \to \beta\N$. % TODO ? \[ \cU + \cV = \{X \subseteq \N : \{m \colon \{n \colon m+n \in X\} \in \cV \} \in \cU \}. \] This is not commutative, but associative and $a \mapsto a + b$ is continuous for a fixed $b$, i.e.~it is a left compact topological semigroup. Let $X$ be a compact Hausdorff space and let $T \colon X \to X$ be continuous.% \footnote{Note that this may not be a homeomorphism, i.e.~we only get a $\N$-action but not a $\Z$-action.} For any $\cU \in \beta\N$, we define $T^{\cU}$ by $T^\cU(x) \coloneqq \ulim{\cU}_n T^n(x)$ for $x \in X$. For fixed $x$, the map $\cU \mapsto T^{\cU}(x)$ is continuous. (More generally, for every $f\colon \N \to X$ the extension $\tilde{f}\colon \beta\N \to X$ is continuous). Note that for fixed $\cU$, the map $x \mapsto T^\cU(x)$ is not necessarily continuous. \begin{definition} Let $X$ be a compact Hausdorff space and $T\colon X\to X$ continuous. A point $x \in X$ is \vocab{recurrent}, iff for every neighbourhood $G$ of $x$, infinitely many $n$ satisfy $T^n(x) \in G$. A point $x \in X$ is \vocab{uniformly recurrent}, if for every neighbourhood $G$ of $x$, there exists $M \in \N$, such that \[ \forall n.~\exists k < M.~ T^{n+k}(x) \in G. \] \end{definition} \begin{fact} Let $\cU, \cV \in \beta\N$ and $T\colon X \to X$ continuous for a compact Hausdorff space $X$. Then $T^{\cU}(T^{\cV}(x)) = T^{\cU + \cV}(x)$. \end{fact} \begin{proof} \begin{IEEEeqnarray*}{rCl} T^{\cU + \cV}(x) &=& \ulim{(\cU + \cV)}_k T^k(x)\\ &=& \ulim{\cU}_m \ulim{\cV}_n T^{m+n}(x)\\ &\overset{T^m \text{ continuous}}{=}& \ulim{\cU}_m T^m (\ulim{\cV}_n T^n(x))\\ &=& T^\cU(T^\cV(x)). \end{IEEEeqnarray*} \end{proof} \todo{Homework: Check the details that were omitted during the lecture.}