\lecture{21}{2024-01-12}{Iterated Skew Shift} \begin{refproof}{thm:taudminimal:help} \gist{% Suppose towards a contradiction that $Y \times S^1$ contains a proper minimal subflow $Z$. Consider the projection $\pi\colon Y \times S^1 \to Y$. By minimality of $Y$, we have $\pi(Z) = Y$. Note that for every $\theta \in S^1$, $\theta \cdot Z$ is minimal, so either $\theta \cdot Z = Z$ or $(\theta \cdot Z)\cap Z = \emptyset$.% \footnote{actually $(1,\ldots,1, \theta) \cdot Z$, we identify $S^1$ and $\{0\}^d \times S^1 \subseteq Y \times S^1$.} Let $H = \{\theta \in S^1 : \theta \cdot Z = Z\}$. $H$ is a closed subgroup of $S^1$. % H is a rotation of Z containing 1 (?) Therefore either $H = S^1$ (but in that case $Z = Y \times S^1$, so this cannot be the case), or there exists $m \in \Z$ such that $H = \{ \xi \in S^1 : \xi^m = 1 \}$ by \yaref{fact:tau1minimal}. Note that if $(y, \beta) \in Z$ then for $t \in S^1$, we have \[ (y, \beta \cdot t) \in Z \iff t^m = 1. \] Therefore for every $y \in Y$, there are exactly $m$ many $\xi \in S^1$ such that $(y, \xi) \in Z$. Specifically for all $y$ there exists $\beta^{(y)} \in S^1$ such that $(y,\xi) \in Z$ iff \[ \xi \in \{\beta^{(y)} \cdot t_1, \beta^{(y)} \cdot t_2, \ldots,\beta^{(y)} \cdot t_m\}, \] where the $t_i \in S^1$ are such that $t_i^m = 1$ for all $i$ and $i \neq j \implies t_i \neq t_j$, i.e.~the $t_i$ are the $m$\textsuperscript{th} roots of unity. Consider $f \colon (y,\xi) \mapsto (y, \xi^m)$. Since $(\beta^{(y)} \cdot t_i)^m = (\beta^{(y)})^m$ we get a continuous function $\phi\colon Y \to S^1$ such that \[ Z = \{(y,\xi) \in Y \times S^1 : \xi^m = \phi(y)\}, \] namely \begin{IEEEeqnarray*}{rCl} \phi\colon Y &\longrightarrow & S^1 \\ y &\longmapsto & (\beta^{(y)})^m \end{IEEEeqnarray*} Z is isomorphic to $m$ copies of the graph of that function, hence the graph is closed, so the function is continuous. Note that $f(Z)$ is homeomorphic to $Y$ (for every $y \in Y$, $\phi(y)$ is the unique element such that $(y,\phi(y)) \in f(Z)$). \begin{claim} $\phi(S(y)) = \phi(y) \cdot (\sigma(y))^m$. \end{claim} \begin{subproof} We have $T(y, \xi) = (S(y), \sigma(y) \cdot \xi)$ (cf.~\yaref{rem:l20:sigma}). $Z$ is invariant under $T$. So for $(y, \xi) \in Z$ we get $T(y, \xi) = ({\color{red}S(y)}, {\color{blue}\sigma(y) \cdot \xi}) \in Z$. Thus \begin{IEEEeqnarray*}{rCl} \phi({\color{red}S(y)}) &=& ({\color{blue}\sigma(y) \cdot \xi})^m\\ &=& (\sigma(y))^m \cdot \xi^m\\ &=& (\sigma(y))^m \cdot \phi(y). \end{IEEEeqnarray*} \end{subproof} Applying $\gamma$ we obtain \[ [\phi \circ S \circ \gamma] = [\phi \circ \gamma] + [x \mapsto (\sigma(\gamma(x))^n]. \] $S\circ \gamma$ is homotopic to $\gamma$, so $[\phi \circ S \circ \gamma] = [\phi \circ \gamma]$. Thus $[x \mapsto (\sigma(\gamma(x))^n] = 0$, but that is a contradiction to (b) $\lightning$ }{ \begin{itemize} \item $S \coloneqq \tau_d$, $T \coloneqq \tau_{d+1}$ ($T(y, \xi) = (S(y), \sigma(y) + \xi)$), $Y \coloneqq (S^1)^d$, $\gamma: S^1 \to Y, x \mapsto (x,x,\ldots,x)$. \item (a) $\gamma \simeq S \circ \gamma$. \item (b) $\forall m \in \Z.~ [m \cdot \sigma \circ \gamma] = m$ ($\sigma(\gamma(x)) = x$). \item Suppose $Y \times S^1$ is not minimal. Let $Z$ be a proper minimal subflow, $\pi\colon Y \times S^1 \to Y$. \item $\pi(Z) = Y$ ($Y$ minimal) \item $Z + (0,\ldots,0,\theta)$ is minimal, so $\theta + Z = Z$ or $\theta + Z \cap Z = \emptyset$. \item $H \coloneqq \{\theta \in S^1 : \theta + Z = Z\}$ (closed subgroup of $S^1$). \begin{itemize} \item $H \neq S^1$ as $Z$ is a proper subflow. \item $H = \langle \frac{1}{m} \rangle$. \end{itemize} \item $(y, \beta) \in Z$, then $(y, \beta + t) \in Z \iff m \cdot t = 0$. Pick $\beta^{(y)}$ such that $(y, \xi) \in Z \iff \xi \in \{\beta^{(y)} + \frac{n}{m} : n \in \N\}$. \item Consider $(y, \xi) \mapsto (y, m \cdot \xi)$. Get \begin{IEEEeqnarray*}{rCl} \phi\colon Y &\longrightarrow & S^1 \\ y &\longmapsto & m \beta^{(y)} \end{IEEEeqnarray*} continuous. \item $\phi \circ S = \phi + m \sigma$: $Z$ is $T$-invariant. \item $[\phi \circ S \circ \gamma] = [\phi \circ \gamma] + [m \sigma \circ \gamma]$ $\implies [m \sigma \circ \gamma] = 0 \lightning$. \end{itemize} } \end{refproof} Let $X_n \coloneqq (S^1)^n$ and $X \coloneqq (S^1)^{\N}$. \begin{theorem} \label{thm:21:xnmaxiso} $(X_n, \tau_n)$ is the maximal isometric extension of $(X_{n-1}, \tau_{n-1})$ in $(X,\tau)$. \end{theorem} \begin{corollary} The order of $(X,\tau)$ is $\omega$. \end{corollary}