\subsection{The Ellis semigroup} \lecture{17}{2023-12-12}{The Ellis semigroup} Let $(X, d)$ be a compact metric space and $(X, T)$ a flow. Let $X^{X} \coloneqq \{f\colon X \to X\}$ be the set of all functions.\footnote{We take all the functions, they need not be continuous.} We equip this with the product topology, i.e.~a subbasis is given by sets \[ U_{\epsilon}(x,y) \coloneqq \{f \in X^X : d(x,f(y)) < \epsilon\}. \] for all $x,y \in X$, $\epsilon > 0$. $X^{X}$ is a compact Hausdorff space.\footnote{cf.~\href{https://en.wikipedia.org/wiki/Tychonoff's_theorem}{Tychonoff's theorem}} \begin{remark}% \footnote{cf.~\yaref{s11e1}} Let $f_0 \in X^X$ be fixed. \begin{itemize} \item $X^X \ni f \mapsto f \circ f_0$ is continuous: Consider $\{f : f \circ f_0 \in U_{\epsilon}(x,y)\}$. We have $f \circ f_0 \in U_{\epsilon}(x,y)$ iff $f \in U_\epsilon(x,f_0(y))$. \item Fix $x_0 \in X$. Then $f \mapsto f(x_0)$ is continuous. \item In general $f \mapsto f_0 \circ f$ is not continuous, but if $f_0$ is continuous, then the map is continuous. \end{itemize} \end{remark} \begin{definition} \gist{% Let $(X,T)$ be a flow. Then the \vocab{Ellis semigroup} is defined by $E(X,T) \coloneqq \overline{T} \subseteq X^X$, i.e.~identify $t \in T$ with $x \mapsto tx$ and take the closure in $X^X$. }{% The \vocab{Ellis semigroup} of a flow $(X,T)$ is $E(X,T) \coloneqq \overline{T} \subseteq X^X$. } \end{definition} $E(X,T)$ is compact and Hausdorff, since $X^X$ has these properties. \gist{ Properties of $(X,T)$ translate to properties of $E(X,T)$: \begin{goal} We want to show that if $(X,T)$ is distal, then $E(X,T)$ is a group. \end{goal} }{} \begin{proposition} $E(X,T)$ is a semigroup, i.e.~closed under composition. \end{proposition} \begin{proof} \gist{ Let $G \coloneqq E(X,T)$. Take $t \in T$. We want to show that $tG \subseteq G$, i.e.~for all $h \in G$ we have $th \in G$. We have that $t^{-1}G$ is compact, since $t^{-1}$ is continuous and $G$ is compact. It is $T \subseteq t^{-1}G$ since $T \ni s = t^{-1}\underbrace{(ts)}_{\in G}$. So $G = \overline{T} \subseteq t^{-1}G$. Hence $tG \subseteq G$. \begin{claim} If $g \in G$, then \[ \overline{T} g = \overline{Tg}. \] \end{claim} \begin{subproof} Cf.~\yaref{s11e1} \end{subproof} Let $g \in G$. We need to show that $Gg \subseteq G$. It is \[ Gg = \overline{T}g = \overline{Tg}. \] Since $G$ compact, and $Tg \subseteq G$, we have $ \overline{Tg} \subseteq G$. }{ $G \coloneqq E(X,T)$. \begin{itemize} \item $\forall t \in T. ~ tG \subseteq G$: \begin{itemize} \item $t^{-1}G$ is compact. \item $T \subseteq t^{-1}G$, \item $\leadsto G = \overline{T} \subseteq t^{-1}G$, i.e.~$tG \subseteq G$. \end{itemize} \item $\forall g \in G.~\overline{T}g = \overline{Tg}$ (cts.~map from compact to Hausdorff) \item $\forall g \in G.~Gg \subseteq G$ : $Gg = \overline{T}g = \overline{Tg} \overset{G \text{ compact}, Tg \subseteq G}{\subseteq} G$. \end{itemize} } \end{proof} \begin{definition} A \vocab{compact semigroup} $S$ is a nonempty semigroup\footnote{may not contain inverses or the identity} with a compact Hausdorff topology, such that $S \ni x \mapsto xs$ is continuous for all $s$. \end{definition} \gist{ \begin{example} The Ellis semigroup is a compact semigroup. \end{example} }{} \begin{lemma}[Ellis–Numakura] \yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura} Every non-empty compact semigroup contains an \vocab{idempotent} element, i.e.~$f$ such that $f^2 = f$. \end{lemma} \begin{proof} \gist{ Using Zorn's lemma, take a $\subseteq$-minimal compact subsemigroup $R$ of $S$ and let $s \in R$. Then $Rs$ is also a compact subsemigroup and $Rs \subseteq R$. By minimality of $R$, $R = Rs$. Let $P \coloneqq \{ x \in R : xs = s\}$. Then $P \neq \emptyset$, since $s \in Rs$ and $P$ is a compact semigroup, since $x \overset{\alpha}\mapsto xs$ is continuous and $P = \alpha^{-1}(s) \cap R$. Thus $P = R$ by minimality, so $s \in P$, i.e.~$s^2 = s$. }{ \begin{itemize} \item Take $R \subseteq S$ minimal compact subsemigroup (Zorn), $s \in R$. \item $Rs \subseteq R \implies Rs = R$. \item $P \coloneqq \{x \in R : xs = s\}$: \begin{itemize} \item $P \neq \emptyset$, since $s \in Rs$ \item $P$ compact, since $P = \alpha^{-1}(s) \cap R$, $\alpha: x \mapsto xs$ cts. \item $P = R \implies s^2 = s$. \end{itemize} \end{itemize}% } \end{proof} \gist{ The \yaref{lem:ellisnumakura} is not very interesting for $E(X,T)$, since we already know that it has an identity. %in fact we might have chosen $R = \{1\}$ in the proof. But it is interesting for other semigroups. }{} \begin{theorem}[Ellis] $(X,T)$ is distal iff $E(X,T)$ is a group. \end{theorem} \begin{proof} Let $G \coloneqq E(X,T)$ and let $d$ be a metric on $X$. \gist{ For all $g \in G$ we need to show that $x \mapsto gx$ is injective. If we had $gx = gy$, then $d(gx,gy) = 0$. Then $\inf_{t \in T} d(tx,ty) = 0$, but the flow is distal, hence $x = y$. Let $g \in G$. Consider the compact semigroup $\Gamma \coloneqq Gg$. By the \yaref{lem:ellisnumakura}, there is $f \in \Gamma$ such that $f^2 = f$, i.e.~for all $x \in X$ we have $f^2(x) = f(x)$. Since $f$ is injective, we get that $x = f(x)$, i.e.~$f = \id$. Since $f \in Gg$, there exists $g' \in G$ such that $f = g' \circ g$. It is $g' = g'gg'$, so $\forall x .~g'(x) = g'(g g'(x))$. Hence $g'$ is injective and $x = gg'(x)$, i.e.~$g g' = \id$. }{ \begin{itemize} \item $x \mapsto gx$ injective for all $g \in G$: \[gx = gy \implies d(gx,gy) = 0 \implies \inf_{t \in T} d(tx, ty) = 0 \overset{\text{distal}}{\implies} x = y. \] \item Fix $g \in G$. \begin{itemize} \item $\Gamma \coloneqq Gg$ is a compact semigroup. \item $\exists f\in \Gamma.~f^2 = f$ (\yaref{lem:ellisnumakura}) \item $f$ is injective, hence $f = \id$. \item Take $g'$ such that $g'g = f$. $g'gg' = g' \implies gg' = \id$. \end{itemize} \end{itemize} } \gist{ On the other hand if $(x_0,x_1)$ is proximal, then there exists $g \in G$ such that $gx_0 = gx_1$.% \footnote{cf.~\yaref{s11e1} (e)} It follows that an inverse to $g$ can not exist. }{If $(x_0,x_1)$ is proximal, there is $g \in G$ with $gx_0 = gx_1$, i.e.~no inverse to $g$.} \end{proof} % Let $(X,T)$ be a flow. % Then by Zorn's lemma, there exists $X_0 \subseteq X$ % such that $(X_0, T)$ is minimal. % In particular, % for $x \in X$ and $\overline{Tx} = Y$ % we have that $(Y,T)$ is a flow. % However if we pick $y \in Y$, $Ty$ might not be dense. % TODO: question! % TODO: think about this! % We want to a minimal subflow in a nice way: \begin{theorem} \label{thm:distalflowpartition} If $(X,T)$ is distal, then $X$ is the disjoint union of minimal subflows. In fact those disjoint sets will be orbits of $E(X,T)$. \end{theorem} \begin{proof} Let $G = E(X,T)$. \gist{ Note that for all $x \in X$, we have that $Gx \subseteq X$ is compact and invariant under the action of $G$. Since $G$ is a group, the orbits partition $X$.% \footnote{Note that in general this does not hold for semigroups.} We need to show that $(Gx, T)$ is minimal. Suppose that $y \in Gx$, i.e.~$Gx = Gy$. Since $g \mapsto gy$ is continuous, we have $Gx = Gy = \overline{T}y = \overline{Ty}$, so $Ty$ is dense in $Gx$. }{ \begin{itemize} \item $G$ is a group, so the $G$-orbits partition $X$. \item Let $y \in Gx$, then $Gx \overset{y \in Gx}{=} Gy \overset{\text{def}}{=} \overline{T}y \overset{g \mapsto gy \text{ cts.}}{=} \overline{Ty}$, i.e.~$(Gx,T)$ is minimal. \end{itemize} } \end{proof} \begin{corollary} If $(X,T)$ is distal and minimal, then $E(X,T) \acts X$ is transitive. \end{corollary}