\lecture{12}{2023-11-24}{} \begin{definition} A tree $T$ is \vocab{ill-founded} if it has an infinite branch, i.e. $[T] \neq \emptyset$ Otherwise it is called \vocab{well-founded}. Let \[\IF \coloneqq \{T \in \Tr : T \text{ is ill-founded}\}\] and \[\WF \coloneqq \{T \in \Tr : T \text{ is well-founded}\}\] \end{definition} \begin{proposition} \label{prop:ifs11} $\IF \in \Sigma^1_1(\Tr)$. \end{proposition} \begin{proof} We have \begin{IEEEeqnarray*}{rCl} T \in \IF &\iff& \exists \beta \in \cN .~\forall n \in \N.~T(\beta\defon{n}) = 1. \end{IEEEeqnarray*} Consider \[D \coloneqq \{(T, \beta) \in \Tr \times \cN : \forall n.~ T(\beta\defon{n}) = 1\}.\] \gist{% Note that this set is closed in $\Tr \times \cN$, since it is a countable intersection of clopen sets. Then $\IF = \proj_{\Tr}(D) \in \Sigma^1_1$. }{$D \overset{\text{closed}}{\subseteq} \Tr \times \cN$ and $\IF = \proj_{\Tr}(D)$.} \end{proof} \begin{definition} An analytic set $B$ in some Polish space $Y$ is \vocab{complete analytic} (\vocab{$\Sigma^1_1$-complete}) \gist{% iff for any analytic $A \in \Sigma^1_1(X)$ for some Polish space $X$, there exists a Borel function $f\colon X\to Y$ such that $x \in A \iff f(x) \in B$, i.e.~$f^{-1}(B) = A$. }{% iff for any $A \in \Sigma^1_1(X)$, $X$ Polish there exists $f\colon X \to Y$ Borel such that $f^{-1}(B) = A$.} \gist{% Similarly, a conalytic set $B$ is called \vocab{complete coanalytic} (\vocab{$\Pi^1_1$-complete}) iff for any $A \subseteq \Pi^1_1(X)$ there exists $f\colon X \to Y$ Borel such that $f^{-1}(B) = A$. }{Similarly we define \vocab{complete coanalytic} / \vocab{$\Pi_1^1$-complete}.} \end{definition} \begin{observe} \leavevmode \begin{itemize} \item Complements of $\Sigma^1_1$-complete sets are $\Pi^1_1$-complete. \item $\Sigma^1_1$-complete sets are never Borel% \gist{: Suppose there is a $\Sigma^1_1$-complete set $B \in \cB(Y)$. Take $A \in \Sigma^1_1(X) \setminus \cB(X)$% \footnote{e.g.~\yaref{thm:universals11}} and $f\colon X \to Y$ Borel. But then we get that $f^{-1}(B)$ is Borel $\lightning$. }{.} \end{itemize} \end{observe} \begin{theorem} \label{thm:lec12:1} Suppose that $A \subseteq \cN$ is analytic. \gist{% Then there is a continuous function $f\colon \cN \to \Tr$ such that $x \in A \iff f(x)$ is ill-founded, i.e.~$A = f^{-1}(\IF)$. }{% Then there exists $f\colon \cN \to \Tr$ continuous such that $A = f^{-1}(\IF)$. } \end{theorem} For the proof we need some prerequisites: \gist{% Recall that for $S$ countable, the pruned% \footnote{no maximal elements, in particular this implies ill-founded if the tree is non empty. } trees $T \subseteq S^{<\N}$ on $S$ correspond to closed subsets of $S^{\N}$:% \footnote{cf.~\yaref{s3e1} (c)} \begin{IEEEeqnarray*}{rCl} T &\longmapsto & [T]\\ \{\alpha\defon{n} : \alpha \in D, n \in \N\} &\longmapsfrom & D\\ \end{IEEEeqnarray*} }{% For $S$ countable, pruned trees on $S$ correspond to closed subsets of $S^{\N}$ via $T \mapsto [T]$. } \begin{definition} If $T$ is a tree on $\N \times \N$ and $x \in \cN$, then the \vocab{section at $x$} denoted $T(x)$, is the following tree on $\N$ : \[ T(x) = \{s \in \N^{<\N} : (x\defon{|s|}, s) \in T\}. \] \end{definition} \begin{proposition} \label{prop:lec12:2} Let $A \subseteq \cN$. The following are equivalent: \begin{itemize} \item $A$ is analytic. \item There is a pruned tree on $\N \times \N$ such that \[A = \proj_1 ([T]) = \{x \in \cN : \exists y \in \cN.~ (x,y) \in [T]\}.\] \end{itemize} \end{proposition} \begin{proof} \gist{% $A$ is analytic iff there exists $F \overset{\text{closed}}{\subseteq} (\N \times \N)^{\N}$ such that $A = \proj_1(F)$. But closed sets of $\N^\N \times \N^{\N}$ correspond to pruned trees, by the first point. }{Closed subsets of $\N^\N \times \N^\N$ correspond to pruned trees.} \end{proof} \begin{refproof}{thm:lec12:1} \gist{% Take a tree $T$ on $\N \times \N$ as in \autoref{prop:lec12:2}, i.e.~$A = \proj_1([T])$. }{Write $A = \proj_1([T])$ for a pruned tree $T$ on $\N \times \N$.} Consider \begin{IEEEeqnarray*}{rCl} f\colon \cN &\longrightarrow & \Tr \\ x &\longmapsto & T(x). \end{IEEEeqnarray*} \gist{% Clearly $x \in A \iff f(x) \in \IF$. $f$ is continuous: Let $x\defon{n} = y\defon{n}$ for some $n \in \N$. Then for all $m \le n, s,t \in \N^{<\N}$ such that $s = x\defon{m} = y \defon{m}$ and $|t| = |s|$, we have \begin{itemize} \item $t \in T(x) \iff (s,t) \in T$, \item $t \in T(y) \iff (s,t) \in T$. \end{itemize} So if $x\defon{n} = y\defon{n}$, then $t \in T(x) \iff t \in T(y)$ as long as $|t| \le n$. }{} \end{refproof} \begin{corollary} \label{cor:ifs11c} $\IF$ is $\Sigma^1_1$-complete. \end{corollary} \begin{proof} Let $X$ be Polish. Suppose that $A \subseteq X$ is analytic and uncountable% \gist{}{ (trivial for countable)}. Then % https://q.uiver.app/#q=WzAsNSxbMCwwLCJYIl0sWzEsMCwiXFxjTiJdLFsyLDAsIlxcVHIiXSxbMCwxLCJBIl0sWzEsMSwiYihBKSJdLFsxLDIsImYiXSxbMCwxLCJiIl0sWzMsMCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNCwxLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dXQ== \[\begin{tikzcd} X & \cN & \Tr \\ A & {b(A)} \arrow["f", from=1-2, to=1-3] \arrow["b", from=1-1, to=1-2] \arrow[hook, from=2-1, to=1-1] \arrow[hook, from=2-2, to=1-2] \end{tikzcd}\] where $f$ is chosen as in \yaref{thm:lec12:1}. \gist{% If $X$ is Polish and countable and $A \subseteq X$ analytic, just consider \begin{IEEEeqnarray*}{rCl} g \colon X &\longrightarrow & \Tr \\ x &\longmapsto & \begin{cases} a &: x \in A,\\ b &: x \not\in A,\\ \end{cases} \end{IEEEeqnarray*} where $a \in \IF$ and $b \not\in \IF$ are chosen arbitrarily. }{} \end{proof} \subsection{Linear Orders} Let us consider the space \[\LO \coloneqq \{x \in 2^{\N\times \N} : x \text{ is a linear order on $\N$}\},\] where we code a linear order $(\N, <)$ by $x \in 2^{\N \times \N}$ with $x(m,n) = 1 \iff m \le n$. Let \[ \WO \coloneqq \{x \in \LO: x \text{ is a well ordering}\}. \] \gist{% Recall that \begin{itemize} \item $(A,<)$ is a well ordering iff there are no infinite descending chains. \item Every well ordering is isomorphic to an ordinal. \item Any two well orderings are comparable, i.e.~they are isomorphic, or one is isomorphic to an initial segment of the other. Let $(A, <_A) \prec (B, <_B)$ denote that $(A, <_A)$ is isomorphic to a proper initial segment of $(B, <_B)$. \end{itemize} }{} \begin{definition} A \vocab{rank} on some set $C$ is a function \[ \phi\colon C \to \Ord. \] \end{definition} \gist{% \begin{example} Let $C = \WO$ and \begin{IEEEeqnarray*}{rCl} \phi\colon \WO &\longrightarrow & \Ord \\ \end{IEEEeqnarray*} where $\phi((A,<_A))$ is the unique ordinal isomorphic to $(A, <_A)$. \end{example} }{}