\subsection{The Lusin Separation Theorem} \lecture{10}{2023-11-17}{} \begin{theorem}[\vocab{Lusin separation theorem}] \yalabel{Lusin Separation Theorem}{Lusin Separation}{thm:lusinseparation} Let $X$ be Polish and $A,B \subseteq X$ disjoint analytic. Then there is a Borel set $C$, such that $A \subseteq C$ and $C \cap B = \emptyset$. \end{theorem} \begin{corollary} Let $X$ be Polish. Then \[\cB(X) = \Delta^1_1(X),\] where $\Delta^1_1(X) \coloneqq \Sigma^1_1(X) \cap \Pi_1^1(X)$. \end{corollary} \begin{proof} Clearly $\cB(X) \subseteq \Delta^1_1(X)$. Let $A \in \Delta^1_1(X)$. Then $A, X \setminus A \in \Sigma^1_1(X)$. These can be separated by a Borel set $C$, but then $A = C$, hence $A \in \cB(X)$. \end{proof} For the proof of the \yaref{thm:lusinseparation}, we need the following definition: \begin{definition} Let $X$ be Polish, $P, Q \subseteq X$. We say that $P, Q$ are \vocab{Borel-separable}, if there exists $R \in \cB(X)$, such that $P \subseteq R, Q \cap R = \emptyset$. \end{definition} \begin{lemma} \label{lem:lusinsephelp} If $P = \bigcup_{m < \omega} P_m$, $Q = \bigcup_{n < \omega} Q_n$ are such that for any $m, n$ the sets $P_m$ and $Q_n$ are Borel separable, then $P$ and $Q$ are Borel separable. \end{lemma} \begin{proof} For all $m, n$ pick $R_{m,n}$ Borel, such that $P_m \subseteq R_{m,n}$ and $Q_n \cap R_{m,n} = \emptyset$. Then $R = \bigcup_m \bigcap_n R_{m,n}$ has the desired property that $P \subseteq R$ and $R \cap Q = \emptyset$. \end{proof} \begin{notation} For $s \in \omega^{<\omega}$ be write $\cN_s \coloneqq \{x \in \cN : x \supseteq s\}$. \end{notation} \begin{refproof}{thm:lusinseparation} Let $X$ be Polish, and $A, B \subseteq X$ analytic such that $A \cap B = \emptyset$ Then there are continuous surjections $f\colon \cN \twoheadrightarrow A \subseteq X$ and $g\colon \cN \twoheadrightarrow B \subseteq X$. Write $A_s \coloneqq f(\cN_s)$ and $B_s \coloneqq g(\cN_s)$. Note that $A_s = \bigcup_m A_{s\concat m}$ and $B_s = \bigcup_{n < \omega} B_{s\concat n}$. In particular $A = \bigcup_{m < \omega} A_{\underbrace{\langle m \rangle}_{\in \omega^1}}$ and $B = \bigcup_{n < \omega} B_{\langle n \rangle}$. Towards a contradiction suppose that $A$ and $B$ are not Borel separable. Then by \yaref{lem:lusinsephelp}, there exist $m,n$ such that $A_{\langle m \rangle}$ and $B_{\langle n \rangle}$ can't be separated. Since $A_{\langle m \rangle} = \bigcup_i A_{\langle m, i \rangle}$ and similarly for $B$, there exist $i,j$ such that $A_{\langle m,i \rangle}$ and $B_{\langle n, j\rangle}$ are not Borel separable. Recursively, we find sequences $x,y \in \cN$, such that $A_{x\defon{n}}$ and $B_{y\defon{n}}$ are not Borel separable for any $n < \omega$. So $f(x) \in A$ and $g(y) \in B$. Recall that $A_{x\defon{n}} = f(\cN_{x\defon{n}}$ and $B_{y\defon{n}} = g(\cN_{x\defon{n}})$. Since $A \cap B = \emptyset$, we get that $f(x) \neq g(y)$. Let $U,V$ be disjoint open such that $f(x) \in U, g(y) \in V$. As $f$ and $g$ are continuous, $U \subseteq f(\cN_{x\defon{n}})$ and $V \subseteq g(\cN_{x\defon{n}})$ for $n $ large enough. Then $U$ separates $A_{x\defon{n_0}}$ and $V$ separates $B_{y\defon{n_0}}$, contradicting the choice of $x$ and $y$. \end{refproof} \begin{theorem}[Lusin-Souslin] \yalabel{Lusin-Souslin}{Lusin-Souslin}{thm:lusinsouslin} Let $X, Y$ be Polish and $f\colon X \to Y$ Borel. Let $A \in \cB(X)$ such that $f\defon{A}$ is injective. Then $f(A)$ is Borel. \end{theorem} \begin{refproof}{thm:lusinsouslin} W.l.o.g.~suppose that $f$ is continuous, $A$ is closed\footnote{We might even assume that $A$ is clopen, but we only need closed.} and $X = \cN$ by \yaref{thm:bairetopolish}: % https://q.uiver.app/#q=WzAsNyxbMCwwLCJcXGNOIl0sWzAsMSwiWiJdLFsxLDEsIlgiXSxbMSwyLCJBIl0sWzAsMiwiaF57LTF9KEEpIl0sWzIsMSwiWSJdLFsyLDIsImYoQSkiXSxbMiw1LCJmIl0sWzMsNiwiZlxcZGVmb257QX0iLDIseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFsxLDBdLFsxLDIsImggIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiYXJyb3doZWFkIn19fV0sWzQsMSwiXFxzdWJzZXRlcSIsMSx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzMsMiwiXFxzdWJzZXRlcSIsMSx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzYsNSwiXFxzdWJzZXRlcSIsMSx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzQsMywiaFxcZGVmb257QX0iLDIseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJhcnJvd2hlYWQifX19XV0= \[\begin{tikzcd} \cN \\ Z & X & Y \\ {h^{-1}(A)} & A & {f(A)} \arrow["f", from=2-2, to=2-3] \arrow["{f\defon{A}}"', hook, from=3-2, to=3-3] \arrow[from=2-1, to=1-1] \arrow["{h }", tail reversed, from=2-1, to=2-2] \arrow["\subseteq"{description}, hook, from=3-1, to=2-1] \arrow["\subseteq"{description}, hook, from=3-2, to=2-2] \arrow["\subseteq"{description}, hook, from=3-3, to=2-3] \arrow["{h\defon{A}}"', tail reversed, from=3-1, to=3-2] \end{tikzcd}\] For $s \in \omega^{<\omega}$ write $B_s \coloneqq f(\cN_s \cap A)$. As in the previous proof we have $B_\emptyset = f(A)$ and $B_s = \bigcup_{n < \omega} B_{s\concat n}$ for every $s \in \omega^{<\omega}$. Note that \begin{itemize} \item $\forall n.~\forall s.~ B_{s\concat n } \subseteq B_s$ and \item $\forall n \neq n'.~\forall s.~B_{s\concat n} \cap B_{s \concat n'} = \emptyset$. \end{itemize} The second point follows from injectivity of $f$ and the fact that $\cN_{s \concat n} \cap \cN_{s\concat n'} = \emptyset$. In particular, the $(B_s)$ form a Lusin scheme. Note that $f(A) = \bigcup_{s \in \omega^k} B_s$ for every $k <\omega$, thus $f(A) = \bigcap_{k < \omega} \bigcup_{s \in \omega^k} B_s$. We want to find $B_s^\ast \in \cB(X)$ for $s \in \omega^{<\omega}$, such that the $B_s^\ast$ form a Lusin scheme and still \[ f(A) = \bigcap_{k < \omega} \bigcup_{s \in \omega^{<\omega}} B_s^\ast. \] The existence of such $B_s^\ast$ implies that $f(A)$ is Borel. By the \yaref{cor:lusinseparation}, for all $k < \omega$, we can separate the collection of disjoint analytic sets $\{B_s : s \in \omega^k\}$ Borel sets, i.e. there are disjoint Borel sets $(C_s)_{s \in \omega^k}$ such that $B_s \subseteq C_s$. Using this, we get a Lusin scheme $(B'_s)_{s \in \omega^{<\omega}}$ such that the $B_s'$ are Borel, $B'_{\emptyset} = Y$ and $B_s \subseteq B_s'$: Set $B'_\emptyset = Y$ and $B'_{s\concat n } = B'_s \cap C_{s \concat n}$. However the $B'_s$ might be to large. We define another Lusin scheme $(B^\ast_s)_s$ as follows: Let $B^\ast_\emptyset \coloneqq Y$, and for $s \in \omega^{<\omega}$, $n < \omega$ \[ B^\ast_{s \concat n} = B'_{s \concat n} \cap \overline{B_{s \concat n}} \cap B^\ast_{s}. \] \phantom\qedhere \end{refproof}