\lecture{08}{2023-11-10}{}% \gist{\footnote{% In the beginning of the lecture, we finished the proof of \yaref{thm:clopenize:l2}. This has been moved to the notes on lecture 7.% }}{} \subsection{Parametrizations} %\todo{choose better title} Let $\Gamma$ denote a collection of sets in some space. For us $\Gamma$ will be one of $\Sigma^0_\xi(X), \Pi^0_\xi(X), \Delta^0_\xi(X), \cB(X)$, where $X$ is a metrizable, usually second countable space. \begin{definition} We say that $\cU \subseteq Y \times X$ is \vocab{$Y$-universal} for $\Gamma(X)$ / $\cU$ \vocab{parametrizes} $\Gamma(X)$ iff: \begin{itemize} \item $\cU \in \Gamma(Y \times X)$, \item $\{U_y : y \in Y\} = \Gamma(X)$. \end{itemize} \end{definition} \gist{% \begin{example} Let $X = \omega^\omega$, $Y = 2^{\omega}$ and consider $\Gamma = \Sigma^0_{\omega+5}(\omega^\omega)$. We will show that there is a $2^{\omega}$-universal set for $\Gamma$. \end{example} }{} \begin{theorem} \label{thm:cantoruniversal} Let $X$ be a separable, metrizable space. Then for every $\xi \ge 1$, there is a $2^{\omega}$-universal set for $\Sigma^0_\xi(X)$ and similarly for $\Pi^0_\xi(X)$. \end{theorem} \begin{proof} \gist{% Note that if $\cU$ is $2^{\omega}$ universal for $\Sigma^0_\xi(X)$, then $(2^{\omega} \times X) \setminus \cU$ is $2^{\omega}$-universal for $\Pi^0_\xi(X)$. Thus it suffices to consider $\Sigma^0_\xi(X)$. First let $\xi = 1$. We construct $\cU \overset{\text{open}}{\subseteq} 2^{\omega} \times X$ such that \[ \{U_y : y \in 2^\omega\} = \Sigma^0_1(X). \] Let $(V_n)$ be a basis of open sets of $X$. For all $y \in 2^\omega$ and $x \in X$ put $(y,x) \in \cU$ iff $x \in \bigcup \{V_n : y_n = 1\}$. $\cU$ is open. For any $V \overset{\text{open}}{\subseteq} X$, define $y \in 2^\omega$ by $y_n = 1$ iff $V_n \subseteq V$. Then $\cU_y = V$. Now suppose that there exists a $2^{\omega}$-universal set for $\Sigma^0_{\eta}(X)$ for all $\eta < \xi$. Fix $\xi_0 \le \xi_1 \le \ldots < \xi$ such that $\xi_n \to \xi$ if $\xi$ is a limit, or $\xi_n = \xi'$ if $\xi = \xi' +1$ is a successor. Recall that $\eta_1 \le \eta_2 \implies \Pi^0_{\eta_1}(X) \subseteq \Pi^0_{\eta_2}(X)$. Note that if $A = \bigcup_n A_n$, with $A_n \in \Pi^0_{\eta_n}(X)$ for some $\eta_n < \xi$, we also have $A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$. We construct a $(2^{\omega \times \omega}) \cong 2^\omega$-universal set for $\Sigma^0_\xi(X)$. For $(y_{m,n}) \in (2^{\omega \times \omega})$ and $x \in X$ we set $((y_{m,n}), x) \in \cU$ iff $\exists n.~((y_{m,n})_{m < \omega}, x) \in U_{\xi_n}$, i.e.~iff $\exists n.~x \in (U_{\xi_n})_{(y_{m,n})_{m < \omega}}$. Let $A \in \Sigma^0_\xi(X)$. Then $A = \bigcup_{n} B_n$ for some $B_n \in \Pi^0_{\xi_n}(X)$. Furthermore $\cU \in \Sigma^0_{\xi}((2^{\omega \times \omega} \times X)$. }{ \begin{itemize} \item Suffices for $\Sigma^0_\xi$ (complement is $\Pi^0_\xi$-universal). \item $2^\omega$-universal set for $\Sigma^0_1(X)$, since $X$ is second countable ($(y,x) \in \cU \iff x \in \bigcup_n \{V_n : y_n = 1\}$). \item Induction: Take $\xi_k \to \xi$, and $\cU_{\xi_k}$ $\Sigma^0_{\xi_k}$-universal. Construct $2^{ \omega \times \omega}$-universal: $(y_{m,n}, x) \in \cU :\iff \exists n.~((y_{m,n}), x) \in \cU_{\xi_n}$. \end{itemize} } \end{proof} \begin{remark} Since $2^{\omega}$ embeds into any uncountable polish space $Y$, % such that the image is closed, we can replace $2^{\omega}$ by $Y$ in the statement of the theorem.% \gist{\footnote{By definition of the subspace topology and transfinite induction, $\Sigma^0_\xi(Y)\defon{2^\omega} = \Sigma^0_\xi(2^\omega)$.}}{} \end{remark}