\lecture{04}{2023-10-20}{} \begin{remark} Some of the $F_s$ might be empty. \end{remark} \begin{refproof}{thm:bairetopolish} \gist{% Take \[D = \{x \in \cN : \bigcap_{n} F_{x\defon{n}} \neq \emptyset\}.\] Since $\ldots \supseteq F_{x\defon{n}} \supseteq \overline{F_{x\defon{n+1}}} \supseteq F_{x\defon{n+1}} \supseteq \ldots$ we have \[ \bigcap_{n} F_{x\defon{n}} = \bigcap_{n} \overline{F_{x\defon{n}}}. \] }{} $f\colon D \to X$ is determined by \[ \{f(x)\} = \bigcap_{n} F_{x\defon{n}} \] \gist{% $f$ is injective and continuous. The proof of this is exactly the same as in \yaref{thm:cantortopolish}. }{} \begin{claim} \label{thm:bairetopolish:c1} $D$ is closed. \end{claim} \begin{refproof}{thm:bairetopolish:c1} Let $x_n$ be a series in $D$ converging to $x$ in $\cN$. \begin{claim} $(f(x_n))$ is Cauchy. \end{claim} \begin{subproof} Let $\epsilon > 0$. Take $N$ such that $\diam(F_{x\defon{n}}) < \epsilon$. Take $M$ such that for all $m \ge M$, $x_m\defon{N} = x\defon{N}$. Then for all $m, n \ge M$, we have that $f(x_m), f(x_n) \in F_{x\defon{N}}$. So $d(f(x_m), f(x_n)) < \epsilon$, i.e.~$(f(x_n))$ is Cauchy. \end{subproof} Since $(X,d)$ is complete, there exists $y = \lim_n f(x_n)$. Since for all $m \ge M$, $f(x_m) \in F_{x\defon{N}}$, we get that $y \in \overline{F_{x\defon{N}}}$. Note that for $N' > N$ by the same argument we get $y \in \overline{F_{x\defon{N'}}}$. Hence \[y \in \bigcap_{n} \overline{F_{x\defon{n}}} = \bigcap_{n} F_{x\defon{n}},\] i.e.~$y \in D$ and $y = f(x)$. \end{refproof} We extend $f$ to $g\colon\cN \to X$ in the following way: Take $S \coloneqq \{s \in \N^{<\N}: \exists x \in D, n \in \N.~x\defon{n} = s\}$. Clearly $S$ is a pruned tree. Moreover, since $D$ is closed, we have that\footnote{cf.~\yaref{s3e1}} \[ D = [S] = \{x \in \N^\N : \forall n \in \N.~x\defon{n} \in S\}. \] We construct a \vocab{retraction} $r\colon\cN \to D$ (i.e.~$r = \id$ on $D$ and $r$ is a continuous surjection). Then $g \coloneqq f \circ r$. To construct $r$, we will define $\phi\colon \N^{<\N} \to S$ by induction on the length such that \begin{itemize} \item $s \subseteq t \implies \phi(s) \subseteq \phi(t)$, \item $|s| = \phi(|s|)$, \item if $s \in S$, then $\phi(s) = s$. \end{itemize} \gist{% Let $\phi(\emptyset) = \emptyset$. Suppose that $\phi(t)$ is defined. If $t\concat a \in S$, then set $\phi(t\concat a) \coloneqq t\concat a$. Otherwise take some $b$ such that $t\concat b \in S$ and define $\phi(t\concat a) \coloneqq \phi(t)\concat b$.% }{}% This is possible since $S$ is pruned. \gist{% Let $r\colon \cN = [\N^{<\N}] \to [S] = D$ be the function defined by $r(x) = \bigcup_n f(x\defon{n})$. }{} $r$ is continuous, since $d_{\cN}(r(x), r(y)) \le d_{\cN}(x,y)$. % Lipschitz \gist{% It is immediate that $r$ is a retraction. }{} \end{refproof} \section{Meager and Comeager Sets} \begin{definition} Let $X$ be a topological space, $A \subseteq X$. We say that $A$ is \vocab{nowhere dense} (\vocab{nwd}), if $\inter(\overline{A}) = \emptyset$. Equivalently \begin{itemize} \item $\overline{A}$ is nwd, \item $X \setminus \overline{A}$ is dense in $X$,% \item $\forall \emptyset \neq U \overset{\text{open}}{\subseteq} X.~ \exists \emptyset \neq V \overset{\text{open}}{\subseteq} U.~ V\cap A = \emptyset$. (If we intersect $A$ with an open $U$, then $A \cap U$ is not dense in $U$). \end{itemize} A set $B \subseteq X$ is \vocab{meager} (or \vocab{first category}), iff it is a countable union of nwd sets. The complement of a meager set is called \vocab{comeager}. \end{definition} \gist{% \begin{example} $\Q \subseteq \R$ is meager. \end{example} }{} \begin{notation} Let $A, B \subseteq X$. We write $A =^\ast B$ iff the \vocab{symmetric difference}, $A \symdif B \coloneqq (A\setminus B) \cup (B \setminus A)$, is meager. \end{notation} \gist{% \begin{remark} $=^\ast$ is an equivalence relation. \end{remark} }{} \begin{definition} A set $A \subseteq X$ has the \vocab{Baire property} (\vocab{BP}) if $A =^\ast U$ for some $U \overset{\text{open}}{\subseteq} X$. \end{definition} \gist{% Note that open sets and meager sets have the Baire property. }{} \gist{% \begin{example} \begin{itemize} \item $\Q \subseteq \R$ is $F_\sigma$. \item $\R \setminus \Q \subseteq \R$ is $G_\delta$. \item $\Q \subseteq \R$ is not $G_{\delta}$: It is dense and meager, hence it can not be $G_\delta$ by the \yaref{thm:bct}. \end{itemize} \end{example} }{}