Compare commits

..

2 commits

Author SHA1 Message Date
957c9d9712
lecture 21 2024-01-15 23:27:08 +01:00
82f44e36e8
FIXED IMPORTANT TYPO! & small changes 2024-01-13 23:42:59 +01:00
5 changed files with 112 additions and 16 deletions

View file

@ -102,14 +102,13 @@
Equivalently Equivalently
\begin{itemize} \begin{itemize}
\item $\overline{A}$ is nwd, \item $\overline{A}$ is nwd,
\item $X \setminus A$ is dense in $X$, \item $X \setminus \overline{A}$ is dense in $X$,%
\item $\forall \emptyset \neq U \overset{\text{open}}{\subseteq} X.~ \item $\forall \emptyset \neq U \overset{\text{open}}{\subseteq} X.~
\exists \emptyset \neq V \overset{\text{open}}{\subseteq} U.~ \exists \emptyset \neq V \overset{\text{open}}{\subseteq} U.~
V\cap A = \emptyset$. V\cap A = \emptyset$.
(If we intersect $A$ with an open $U$, (If we intersect $A$ with an open $U$,
then $A \cap U$ is not dense in $U$). then $A \cap U$ is not dense in $U$).
\end{itemize} \end{itemize}
%\todo{Think about this}
A set $B \subseteq X$ is \vocab{meager} A set $B \subseteq X$ is \vocab{meager}
(or \vocab{first category}), (or \vocab{first category}),

View file

@ -1,14 +1,22 @@
\lecture{05}{2023-10-31}{} \lecture{05}{2023-10-31}{}
\begin{fact} \begin{fact}
A set $A$ is nwd iff $\overline{A}$ is nwd. \begin{itemize}
\item A set $A$ is nwd iff $\overline{A}$ is nwd.
\item If $F$ is closed then $F$ is nwd iff $X \setminus F$ is open and dense.
\item Any meager set $B$ is contained in a meager $F_{\sigma}$-set.
\end{itemize}
If $F$ is closed then
$F$ is nwd iff $X \setminus F$ is open and dense.
Any meager set $B$ is contained in
a meager $F_{\sigma}$-set.
\end{fact} \end{fact}
\begin{proof} % remove?
\begin{itemize}
\item This follows from the definition as $\overline{\overline{A}} = \overline{A}$.
\item Trivial.
\item Let $B = \bigcup_{n < \omega} B_n$ be a union of nwd sets.
Then $B \subseteq \bigcup_{n < \omega} \overline{B_n}$.
\end{itemize}
\end{proof}
\begin{definition} \begin{definition}
A \vocab{$\sigma$-algebra} on a set $X$ A \vocab{$\sigma$-algebra} on a set $X$
@ -46,7 +54,7 @@
\[ \[
\left( \bigcup_{n < \omega} A_n \right) \symdif \left( \bigcup_{n < \omega} U_n \right) \left( \bigcup_{n < \omega} A_n \right) \symdif \left( \bigcup_{n < \omega} U_n \right)
\] \]
is meager,\todo{small exercise} is meager,
hence $\bigcup_{n < \omega} A_n \in \cA$. hence $\bigcup_{n < \omega} A_n \in \cA$.
Let $A \in \cA$. Let $A \in \cA$.
@ -61,7 +69,9 @@
In particular, $F \symdif \inter(F)$ is nwd. In particular, $F \symdif \inter(F)$ is nwd.
\end{claim} \end{claim}
\begin{refproof}{thm:bairesigma:c1} \begin{refproof}{thm:bairesigma:c1}
\todo{TODO} $F \setminus \inter(F)$ is closed,
hence $\overline{F \setminus \inter(F)} = F \setminus \inter(F)$.
Clearly $\inter(F\setminus\inter(F)) = \emptyset$.
\end{refproof} \end{refproof}
From the claim we get that From the claim we get that

View file

@ -113,7 +113,7 @@ and $\Pi^0_2 = G_\delta$.
Furthermore define Furthermore define
\[ \[
\Delta^0_\alpha(X(X)) \coloneqq \Sigma^0_\alpha(X) \cap \Pi^0_\alpha(X), \Delta^0_\alpha(X) \coloneqq \Sigma^0_\alpha(X) \cap \Pi^0_\alpha(X),
\] \]
i.e.~$\Delta^0_1$ is the set of clopen sets. i.e.~$\Delta^0_1$ is the set of clopen sets.

View file

@ -1,4 +1,4 @@
\lecture{20}{2024-01-09}{The infinite Torus} \lecture{20}{2024-01-09}{The Infinite Torus}
\begin{example} \begin{example}
\footnote{This is the same as \yaref{ex:19:inftorus}, \footnote{This is the same as \yaref{ex:19:inftorus},
@ -132,6 +132,7 @@ coordinates.
\end{definition} \end{definition}
\begin{remark} \begin{remark}
\label{rem:l20:sigma}
Note that for Note that for
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
\sigma\colon (S^1)^d &\longrightarrow & S^1 \\ \sigma\colon (S^1)^d &\longrightarrow & S^1 \\
@ -167,14 +168,15 @@ coordinates.
\end{proof} \end{proof}
\begin{refproof}{thm:taudminimal:help} \begin{refproof}{thm:taudminimal:help}
Let $s \coloneqq \tau_d$ and $Y \coloneqq (S^1)^d$. Let $S \coloneqq \tau_d$, $T \coloneqq \tau_{d+1}$ and $Y \coloneqq (S^1)^d$.
Consider Consider
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
\gamma\colon S^1 &\longrightarrow & Y \\ \gamma\colon S^1 &\longrightarrow & Y \\
x &\longmapsto & (x,x,\ldots,x) x &\longmapsto & (x,x,\ldots,x).
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
Note that
\begin{enumerate}[(a)] \begin{enumerate}[(a)]
\item $\gamma$ and $s \circ \gamma$ are homotopic \item $\gamma$ and $S \circ \gamma$ are homotopic
via via
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
H\colon S^1 \times [0,1] &\longrightarrow & (S^1)^d \\ H\colon S^1 \times [0,1] &\longrightarrow & (S^1)^d \\
@ -185,9 +187,7 @@ coordinates.
since $\sigma(\gamma(x)) = \sigma((x,\ldots,x)) = x$. since $\sigma(\gamma(x)) = \sigma((x,\ldots,x)) = x$.
\end{enumerate} \end{enumerate}
[to be continued]
\phantom\qedhere \phantom\qedhere
\end{refproof} \end{refproof}

87
inputs/lecture_21.tex Normal file
View file

@ -0,0 +1,87 @@
\lecture{21}{2024-01-12}{Iterated Skew Shift}
\begin{refproof}{thm:taudminimal:help}
Suppose towards a contradiction that
$Y \times S^1$ contains a proper minimal subflow $Z$.
Consider the projection $\pi\colon Y \times S^1 \to Y$.
By minimality of $Y$, we have $\pi(Z) = Y$.
Note that for every $\theta \in S^1$, $\theta \cdot Z$ is minimal,
so either $\theta \cdot Z = Z$ or $(\theta \cdot Z)\cap Z = \emptyset$.
Let $H = \{\theta \in S^1 : \theta \cdot Z = Z\}$.
$H$ is a closed subgroup of $S^1$.
% H is a rotation of Z containing 1 (?)
Therefore either $H = S^1$ (but in that case $Z = Y \times S^1$),
or there exists $m \in \Z$ such that $H = \{ \xi \in S^1 : \xi^m = 1 \}$
by \yaref{fact:tau1minimal}.
Note that if $(y, \beta) \in Z$ then for $t \in S^1$,
we have
\[
(y, \beta \cdot t) \in Z \iff t^m = 1.
\]
Therefore for every $y \in Y$, there are exactly $m$ many
$\xi \in S^1$
such that $(y, \xi) \in Z$.
Specifically for all $y$ there exists $\beta^{(y)} \in S^1$
such that $(y,\xi) \in Z$ iff
\[
\xi \in \{\beta^{(y)} \cdot t_1, \beta^{(y)} \cdot t_2, \ldots,\beta^{(y)} \cdot t_m\},
\]
where the $t_i \in S^1$
are such that
$t_i^m = 1$ for all $i$ and $i \neq j \implies t_i \neq t_j$,
i.e.~the $t_i$ are the $m$\textsuperscript{th} roots of unity.
Consider $f \colon (y,\xi) \mapsto (y, \xi^m)$.
Since $(\beta^{(y)} \cdot t_i)^m = (\beta^{(y)})^m$
we get a continuous\todo{Why is this continuous?}
function $\phi\colon Y \to S^1$
such that
\[
Z = \{(y,\xi) \in Y \times S^1 : \xi^m = \phi(y)\}.
\]
% namely
% \begin{IEEEeqnarray*}{rCl}
% \phi\colon Y &\longrightarrow & S^1 \\
% y &\longmapsto & \beta^{(y)}.
% \end{IEEEeqnarray*}
Note that $f(Z)$ is homeomorphic to $Y$.\todo{Why?}
\begin{claim}
$\phi(S(y)) = \phi(y) \cdot (\sigma(y))^m$.
\end{claim}
\begin{subproof}
We have $T(y, \xi) = (S(y), \sigma(y) \cdot \xi)$
(cf.~\yaref{rem:l20:sigma}).
$Z$ is invariant under $T$.
So for $(y, \xi) \in Z$ we get $T(y, \xi) = ({\color{red}S(y)}, {\color{blue}\sigma(y) \cdot \xi}) \in Z$.
Thus
\begin{IEEEeqnarray*}{rCl}
\phi({\color{red}S(y)}) &=& ({\color{blue}\sigma(y) \cdot \xi})^m\\
&=& (\sigma(y))^m \cdot \xi^m\\
&=& (\sigma(y))^m \cdot \phi(y).
\end{IEEEeqnarray*}
\end{subproof}
Applying $\gamma$ we obtain
\[
[\phi \circ S \circ \gamma] = [\phi \circ \gamma] + [x \mapsto (\sigma(\gamma(x))^n].
\]
$S\circ \gamma$ is homotopic to $\gamma$,
so $[\phi \circ S \circ \gamma] = [\phi \circ \gamma]$.
Thus $[x \mapsto (\sigma(\gamma(x))^n] = 0$,
but that is a contradiction to (b) $\lightning$
\end{refproof}
Let $X_n \coloneqq (S^1)^n$ and $X \coloneqq (S^1)^{\N}$.
\begin{theorem}
$(X_n, \tau_n)$ is the maximal isometric extension of $(X_{n-1}, \tau_{n-1})$
in $(X,\tau)$.
\end{theorem}
\begin{corollary}
The order of $(X,\tau)$ is $\omega$.
\end{corollary}
\todo{I could not attend lecture 21 as I was sick. The official notes on the lecture are very short.
Is something missing in the official notes?}