Compare commits
3 commits
f7f9d7d638
...
c03a62f638
Author | SHA1 | Date | |
---|---|---|---|
c03a62f638 | |||
67a851748e | |||
0f4328f0d1 |
7 changed files with 177 additions and 114 deletions
|
@ -103,7 +103,9 @@
|
|||
Let $X$ be a completely metrizable space.
|
||||
Then every comeager set of $X$ is dense in $X$.
|
||||
\end{theorem}
|
||||
\todo{Proof (copy from some other lecture)}
|
||||
\gist{%
|
||||
\todo{Proof (copy from some other lecture)}
|
||||
}{Not proved in the lecture.}
|
||||
\begin{theoremdef}
|
||||
Let $X$ be a topological space.
|
||||
The following are equivalent:
|
||||
|
@ -118,7 +120,21 @@
|
|||
\footnote{cf.~\yaref{s5e1}}
|
||||
\end{theoremdef}
|
||||
\begin{proof}
|
||||
\todo{Proof (short)}
|
||||
(i) $\implies$ (ii)
|
||||
\gist{%
|
||||
Consider a comeager set $A$.
|
||||
Let $U\neq \emptyset$ be any open set. Since $U$ is
|
||||
non-meager, we have $A \cap U \neq \emptyset$.
|
||||
}{The intersection of a comeager and a non-meager set is nonempty.}
|
||||
|
||||
(ii) $\implies$ (iii)
|
||||
The complement of an open dense set is nwd.
|
||||
\gist{%
|
||||
Hence the intersection of countable
|
||||
many open dense sets is comeager.
|
||||
}{}
|
||||
|
||||
|
||||
|
||||
(iii) $\implies$ (i)
|
||||
Let us first show that $X$ is non-meager.
|
||||
|
|
|
@ -77,7 +77,7 @@
|
|||
sets that are not clopen)}{}.
|
||||
\end{example}
|
||||
|
||||
\subsection{Turning Borels Sets into Clopens}
|
||||
\subsection{Turning Borel Sets into Clopens}
|
||||
|
||||
\begin{theorem}%
|
||||
\gist{%
|
||||
|
@ -109,55 +109,74 @@
|
|||
into $B$.
|
||||
\end{corollary}
|
||||
\begin{proof}
|
||||
Pick $\cT_B \supset \cT$
|
||||
such that $(X, \cT_B)$ is Polish,
|
||||
$B$ is clopen in $\cT_B$ and
|
||||
$\cB(X,\cT) = \cB(X, \cT_B)$.
|
||||
\gist{%
|
||||
Pick $\cT_B \supset \cT$
|
||||
such that $(X, \cT_B)$ is Polish,
|
||||
$B$ is clopen in $\cT_B$ and
|
||||
$\cB(X,\cT) = \cB(X, \cT_B)$.
|
||||
|
||||
Therefore $(\cB, \cT_B\defon{B})$ is Polish.
|
||||
We know that there is an embedding
|
||||
$f\colon 2^{\omega} \to (B, \cT_{B}\defon{B})$.
|
||||
Therefore $(\cB, \cT_B\defon{B})$ is Polish.
|
||||
We know that there is an embedding
|
||||
$f\colon 2^{\omega} \to (B, \cT_{B}\defon{B})$.
|
||||
|
||||
Consider $f\colon 2^{\omega} \to B \subseteq (X, \cT)$.
|
||||
This is still continuous as $\cT \subseteq \cT_B$.
|
||||
Since $2^{\omega}$ is compact, $f$ is an embedding.
|
||||
%\todo{Think about this}
|
||||
Consider $f\colon 2^{\omega} \to B \subseteq (X, \cT)$.
|
||||
This is still continuous as $\cT \subseteq \cT_B$.
|
||||
Since $2^{\omega}$ is compact, $f$ is an embedding.
|
||||
}{%
|
||||
Clopenize $B$.
|
||||
We can embed $2^{ \omega}$ into Polish spaces.
|
||||
Clopenization makes the topology finer,
|
||||
so this is still continuous wrt.~the original topology.
|
||||
$2^{\omega}$ is compact, so this is an embedding.
|
||||
}
|
||||
\end{proof}
|
||||
|
||||
\begin{refproof}{thm:clopenize}
|
||||
We show that
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
A \coloneqq \{B \subseteq \cB(X, \cT)&:\exists & \cT_B \supseteq \cT .\\
|
||||
&& (X, \cT_B) \text{ is Polish},\\
|
||||
&& \cB(X, \cT) = \cB(X, \cT_B)\\
|
||||
&& B \text{ is clopen in $\cT_B$}\\
|
||||
\}
|
||||
\end{IEEEeqnarray*}
|
||||
is equal to the set of Borel sets.
|
||||
|
||||
The proof rests on two lemmata:
|
||||
\gist{%
|
||||
We show that
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
A \coloneqq \{B \subseteq \cB(X, \cT)&:\exists & \cT_B \supseteq \cT .\\
|
||||
&& (X, \cT_B) \text{ is Polish},\\
|
||||
&& \cB(X, \cT) = \cB(X, \cT_B)\\
|
||||
&& B \text{ is clopen in $\cT_B$}\\
|
||||
\}
|
||||
\end{IEEEeqnarray*}
|
||||
is equal to the set of Borel sets.
|
||||
}{%
|
||||
Let $A$ be the set of clopenizable sets.
|
||||
We show that $A = \cB(X)$.
|
||||
}
|
||||
\gist{The proof rests on two lemmata:}{}
|
||||
\begin{lemma}
|
||||
\label{thm:clopenize:l1}
|
||||
Let $(X,\cT)$ be a Polish space.
|
||||
Then for any $F \overset{\text{closed}}{\subseteq} X$ (wrt. $\cT$)
|
||||
there is $\cT_F \supseteq \cT$
|
||||
such that $\cT_F$ is Polish,
|
||||
$\cB(\cT) = \cB(\cT_F)$
|
||||
and $F$ is clopen in $\cT_F$.
|
||||
\gist{%
|
||||
Let $(X,\cT)$ be a Polish space.
|
||||
Then for any $F \overset{\text{closed}}{\subseteq} X$ (wrt. $\cT$)
|
||||
there is $\cT_F \supseteq \cT$
|
||||
such that $\cT_F$ is Polish,
|
||||
$\cB(\cT) = \cB(\cT_F)$
|
||||
and $F$ is clopen in $\cT_F$.
|
||||
}{%
|
||||
Closed sets can be clopenized.
|
||||
}
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Consider $(F, \cT\defon{F})$ and $(X \setminus F, \cT\defon{X \setminus F})$.
|
||||
Both are Polish spaces.
|
||||
Take the coproduct%
|
||||
\footnote{In the lecture, this was called the \vocab{topological sum}.}
|
||||
$F \oplus (X \setminus F)$ of these spaces.
|
||||
This space is Polish,
|
||||
and the topology is generated by $\cT \cup \{F\}$,
|
||||
hence we do not get any new Borel sets.
|
||||
\gist{%
|
||||
Consider $(F, \cT\defon{F})$ and $(X \setminus F, \cT\defon{X \setminus F})$.
|
||||
Both are Polish spaces.
|
||||
Take the coproduct%
|
||||
\footnote{In the lecture, this was called the \vocab{topological sum}.}
|
||||
$F \oplus (X \setminus F)$ of these spaces.
|
||||
This space is Polish,
|
||||
and the topology is generated by $\cT \cup \{F\}$,
|
||||
hence we do not get any new Borel sets.
|
||||
}{Consider $(F, \cT\defon{F}) \oplus (X \setminus F, \cT\defon{X \setminus F})$.}
|
||||
\end{proof}
|
||||
So all closed sets are in $A$.
|
||||
Furthermore $A$ is closed under complements,
|
||||
since complements of clopen sets are clopen.
|
||||
\gist{%
|
||||
So all closed sets are in $A$.
|
||||
Furthermore $A$ is closed under complements,
|
||||
since complements of clopen sets are clopen.
|
||||
}{So $\Sigma^0_1(X), \Pi^0_1(X) \subseteq A$.}
|
||||
|
||||
\begin{lemma}
|
||||
\label{thm:clopenize:l2}
|
||||
|
@ -170,22 +189,23 @@
|
|||
is Polish
|
||||
and $\cB(\cT_\infty) = \cB(T)$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
We have that $\cT_\infty$ is the smallest
|
||||
topology containing all $\cT_n$.
|
||||
To get $\cT_\infty$
|
||||
consider
|
||||
\[
|
||||
\cF \coloneqq \{A_1 \cap A_2 \cap \ldots \cap A_n : A_i \in \cT_i\}.
|
||||
\]
|
||||
Then
|
||||
\[
|
||||
\cT_\infty = \{\bigcup_{i<\omega} B_i : B_i \in \cF\}.
|
||||
\]
|
||||
(It suffices to take countable unions,
|
||||
since we may assume that the $A_1, \ldots, A_n$ in the
|
||||
definition of $\cF$ belong to
|
||||
a countable basis of the respective $\cT_n$).
|
||||
\begin{refproof}{thm:clopenize:l2}
|
||||
\gist{%
|
||||
We have that $\cT_\infty$ is the smallest
|
||||
topology containing all $\cT_n$.
|
||||
To get $\cT_\infty$ consider
|
||||
\[
|
||||
\cF \coloneqq \{A_1 \cap A_2 \cap \ldots \cap A_n : A_i \in \cT_i\}.
|
||||
\]
|
||||
Then
|
||||
\[
|
||||
\cT_\infty = \{\bigcup_{i<\omega} B_i : B_i \in \cF\}.
|
||||
\]
|
||||
(It suffices to take countable unions,
|
||||
since we may assume that the $A_1, \ldots, A_n$ in the
|
||||
definition of $\cF$ belong to
|
||||
a countable basis of the respective $\cT_n$).
|
||||
}{}
|
||||
|
||||
% Proof was finished in lecture 8
|
||||
Let $Y = \prod_{n \in \N} (X, \cT_n)$.
|
||||
|
@ -195,6 +215,7 @@
|
|||
\begin{claim}
|
||||
$\delta$ is a homeomorphism.
|
||||
\end{claim}
|
||||
\gist{%
|
||||
\begin{subproof}
|
||||
Clearly $\delta$ is a bijection.
|
||||
We need to show that it is continuous and open.
|
||||
|
@ -219,28 +240,34 @@
|
|||
\delta(V) = D \cap (X \times X \times \ldots \times U_{n_1} \times \ldots \times U_{n_2} \times \ldots \times U_{n_u} \times X \times \ldots) \overset{\text{open}}{\subseteq} D.
|
||||
\]
|
||||
\end{subproof}
|
||||
}{}
|
||||
|
||||
This will finish the proof since
|
||||
\[
|
||||
D = \{(x,x,\ldots) \in Y : x \in X\} \overset{\text{closed}}{\subseteq} Y
|
||||
\]
|
||||
Why? Let $(x_n) \in Y \setminus D$.
|
||||
Then there are $i < j$ such that $x_i \neq x_j$.
|
||||
Take disjoint open $x_i \in U$, $x_j \in V$.
|
||||
Then
|
||||
\[(x_n) \in X \times X \times \ldots \times U \times \ldots \times X \times \ldots \times V \times X \times \ldots\]
|
||||
is open in $Y\setminus D$.
|
||||
Hence $Y \setminus D$ is open, thus $D$ is closed.
|
||||
It follows that $D$ is Polish.
|
||||
\end{proof}
|
||||
\begin{claim}
|
||||
$D = \{(x,x,\ldots) \in Y : x \in X\} \overset{\text{closed}}{\subseteq} Y.$
|
||||
\end{claim}
|
||||
\gist{%
|
||||
\begin{subproof}
|
||||
Let $(x_n) \in Y \setminus D$.
|
||||
Then there are $i < j$ such that $x_i \neq x_j$.
|
||||
Take disjoint open $x_i \in U$, $x_j \in V$.
|
||||
Then
|
||||
\[(x_n) \in X \times X \times \ldots \times U \times \ldots \times X \times \ldots \times V \times X \times \ldots\]
|
||||
is open in $Y\setminus D$.
|
||||
Hence $Y \setminus D$ is open, thus $D$ is closed.
|
||||
\end{subproof}
|
||||
It follows that $D$ is Polish.
|
||||
}{}
|
||||
\end{refproof}
|
||||
|
||||
We need to show that $A$ is closed under countable unions.
|
||||
By \yaref{thm:clopenize:l2} there exists a topology
|
||||
$\cT_\infty$ such that $A = \bigcup_{n < \omega} A_n$ is open in $\cT_\infty$
|
||||
and $\cB(\cT_\infty) = \cB(\cT)$.
|
||||
Applying \yaref{thm:clopenize:l1}
|
||||
yields a topology $\cT_\infty'$ such that
|
||||
$(X, \cT_\infty')$ is Polish,
|
||||
$\cB(\cT_\infty') = \cB(\cT)$
|
||||
and $A $ is clopen in $\cT_{\infty}'$.
|
||||
\gist{%
|
||||
We need to show that $A$ is closed under countable unions.
|
||||
By \yaref{thm:clopenize:l2} there exists a topology
|
||||
$\cT_\infty$ such that $A = \bigcup_{n < \omega} A_n$ is open in $\cT_\infty$
|
||||
and $\cB(\cT_\infty) = \cB(\cT)$.
|
||||
Applying \yaref{thm:clopenize:l1}
|
||||
yields a topology $\cT_\infty'$ such that
|
||||
$(X, \cT_\infty')$ is Polish,
|
||||
$\cB(\cT_\infty') = \cB(\cT)$
|
||||
and $A $ is clopen in $\cT_{\infty}'$.
|
||||
}{}
|
||||
\end{refproof}
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
\lecture{08}{2023-11-10}{}\footnote{%
|
||||
\lecture{08}{2023-11-10}{}%
|
||||
\gist{\footnote{%
|
||||
In the beginning of the lecture, we finished
|
||||
the proof of \yaref{thm:clopenize:l2}.
|
||||
This has been moved to the notes on lecture 7.%
|
||||
}
|
||||
}}{}
|
||||
|
||||
\subsection{Parametrizations}
|
||||
%\todo{choose better title}
|
||||
|
@ -22,13 +23,14 @@ where $X$ is a metrizable, usually second countable space.
|
|||
\item $\{U_y : y \in Y\} = \Gamma(X)$.
|
||||
\end{itemize}
|
||||
\end{definition}
|
||||
|
||||
\begin{example}
|
||||
Let $X = \omega^\omega$, $Y = 2^{\omega}$
|
||||
and consider $\Gamma = \Sigma^0_{\omega+5}(\omega^\omega)$.
|
||||
We will show that there is a $2^{\omega}$-universal
|
||||
set for $\Gamma$.
|
||||
\end{example}
|
||||
\gist{%
|
||||
\begin{example}
|
||||
Let $X = \omega^\omega$, $Y = 2^{\omega}$
|
||||
and consider $\Gamma = \Sigma^0_{\omega+5}(\omega^\omega)$.
|
||||
We will show that there is a $2^{\omega}$-universal
|
||||
set for $\Gamma$.
|
||||
\end{example}
|
||||
}{}
|
||||
|
||||
\begin{theorem}
|
||||
\label{thm:cantoruniversal}
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
we have that $\Sigma^0_\xi(X) \neq \Pi^0_\xi(X)$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
Fix $\xi < \omega_1$.
|
||||
Towards a contradiction assume $\Sigma^0_\xi(X) = \Pi^0_\xi(X)$.
|
||||
By \autoref{thm:cantoruniversal},
|
||||
|
@ -19,24 +20,30 @@
|
|||
\[z \in A \iff z \in \cU_z \iff (z,z) \in \cU.\]
|
||||
But by the definition of $A$,
|
||||
we have $z \in A \iff (z,z) \not\in \cU \lightning$.
|
||||
}{%
|
||||
Let $\cU$ be $X$-universal for $\Sigma^0_\xi(X)$.
|
||||
Consider $\{y \in X : (y,y) \not\in \cU\} \in \Pi^0_\xi(X) \setminus \Sigma^0_\xi(X)$.
|
||||
}
|
||||
\end{proof}
|
||||
|
||||
|
||||
\begin{definition}
|
||||
Let $X$ be a Polish space.
|
||||
A set $A \subseteq X$
|
||||
is called \vocab{analytic}
|
||||
is called \vocab{analytic}
|
||||
iff
|
||||
\[
|
||||
\exists Y \text{ Polish}.~\exists B \in \cB(Y).~
|
||||
\exists \underbrace{f\colon Y \to X}_{\text{continuous}}.~
|
||||
f(B) = A.
|
||||
\]
|
||||
\]
|
||||
\end{definition}
|
||||
\gist{%
|
||||
Trivially, every Borel set is analytic.
|
||||
We will see that not every analytic set is Borel.
|
||||
We will see that not every analytic set is Borel.
|
||||
}{}
|
||||
\begin{remark}
|
||||
In the definition we can replace the assertion that
|
||||
In the definition we can replace the assertion that
|
||||
$f$ is continuous
|
||||
by the weaker assertion of $f$ being Borel.
|
||||
\todo{Copy exercise from sheet 5}
|
||||
|
@ -50,7 +57,7 @@ We will see that not every analytic set is Borel.
|
|||
Then the following are equivalent:
|
||||
\begin{enumerate}[(i)]
|
||||
\item $A$ is analytic.
|
||||
\item There exists a Polish space $Y$
|
||||
\item There exists a Polish space $Y$
|
||||
and $f\colon Y \to X$
|
||||
continuous\footnote{or Borel}
|
||||
such that $A = f(Y)$.
|
||||
|
@ -64,6 +71,7 @@ We will see that not every analytic set is Borel.
|
|||
\end{enumerate}
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
To show (i) $\implies$ (ii):
|
||||
take $B \in \cB(Y')$
|
||||
and $f\colon Y' \to X$
|
||||
|
@ -73,11 +81,16 @@ We will see that not every analytic set is Borel.
|
|||
such that $B$ is clopen with respect to the new topology.
|
||||
Then let $g = f\defon{B}$
|
||||
and $Y = (B, \cT\defon{B})$.
|
||||
}{(i) $\implies$ (ii):
|
||||
Clopenize the Borel set, then restrict.
|
||||
}
|
||||
|
||||
(ii) $\implies$ (iii):
|
||||
Any Polish space is the continuous image of $\cN$.
|
||||
\gist{%
|
||||
Let $g_1: \cN \to Y$
|
||||
and $h \coloneqq g \circ g_1$.
|
||||
}{}
|
||||
|
||||
(iii) $\implies$ (iv):
|
||||
Let $h\colon \cN \to X$ with $h(\cN) = A$.
|
||||
|
|
|
@ -99,9 +99,10 @@
|
|||
(continuous wrt.~to the topology of $X$)
|
||||
On the other hand
|
||||
\[
|
||||
X \hookrightarrow\cN \overset{\text{continuous embedding}}{\hookrightarrow}\cC
|
||||
X \hookrightarrow\cN \overset{\text{continuous embedding\footnotemark}}{\hookrightarrow}\cC
|
||||
\]
|
||||
\todo{second inclusion was on a homework sheet}
|
||||
\footnotetext{cf.~\yaref{s2e4}}
|
||||
|
||||
For the first inclusion,
|
||||
recall that there is a continuous bijection $b\colon D \to X$,
|
||||
where $D \overset{\text{closed}}{\subseteq} \cN$.
|
||||
|
|
|
@ -79,8 +79,6 @@ with $(f^{-1}(\{1\}), <)$.
|
|||
}{easy}
|
||||
\end{proof}
|
||||
|
||||
% TODO ANKI-MARKER
|
||||
|
||||
\begin{theorem}[Lusin-Sierpinski]
|
||||
The set $\LO \setminus \WO$
|
||||
(resp.~$2^{\Q} \setminus \WO$)
|
||||
|
@ -89,19 +87,23 @@ with $(f^{-1}(\{1\}), <)$.
|
|||
\begin{proof}
|
||||
We will find a continuous function
|
||||
$f\colon \Tr \to \LO$ such that
|
||||
\gist{%
|
||||
\[
|
||||
x \in \WF \iff f(x) \in \WO
|
||||
\]
|
||||
(equivalently $x \in \IF \iff f(x) \in \LO \setminus \WO$).
|
||||
This suffices, since $\IF \subseteq \Tr$ is $\Sigma^1_1$-complete
|
||||
}{
|
||||
$f^{-1}(\LO \setminus \WO) = \IF$.
|
||||
This suffices
|
||||
}
|
||||
(see \yaref{cor:ifs11c}).
|
||||
|
||||
Fix a bijection $b\colon \N \to \N^{<\N}$.
|
||||
|
||||
\begin{idea}
|
||||
For $T \in \Tr$ consider
|
||||
$<_{KB}\defon{T}$
|
||||
% TODO?
|
||||
$<_{KB}\defon{T}$.
|
||||
\end{idea}
|
||||
|
||||
Let $\alpha \in \Tr$.
|
||||
|
@ -109,7 +111,7 @@ with $(f^{-1}(\{1\}), <)$.
|
|||
(i.e.~$m \le_{f(\alpha)} n$)
|
||||
iff
|
||||
\begin{itemize}
|
||||
\item $(\alpha(b(m)) = \alpha(b(n)) = 1$
|
||||
\item $\alpha(b(m)) = \alpha(b(n)) = 1$
|
||||
and $b(m) \le_{KB} b(n)$
|
||||
(recall that we identified $\Tr$
|
||||
with a subset of ${2^{\N}}^{<\N}$),
|
||||
|
@ -123,15 +125,16 @@ with $(f^{-1}(\{1\}), <)$.
|
|||
\end{proof}
|
||||
|
||||
% TODO: new section?
|
||||
|
||||
Recall that a \vocab{rank} on a set $C$
|
||||
is a map $\phi\colon C \to \Ord$.
|
||||
\begin{example}
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\otp \colon \WO &\longrightarrow & \Ord \\
|
||||
x &\longmapsto & \text{the unique $\alpha \in \Ord$ such that $x \cong \alpha$}.
|
||||
\end{IEEEeqnarray*}
|
||||
\end{example}
|
||||
\gist{%
|
||||
Recall that a \vocab{rank} on a set $C$
|
||||
is a map $\phi\colon C \to \Ord$.
|
||||
\begin{example}
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\otp \colon \WO &\longrightarrow & \Ord \\
|
||||
x &\longmapsto & \text{the unique $\alpha \in \Ord$ such that $x \cong \alpha$}.
|
||||
\end{IEEEeqnarray*}
|
||||
\end{example}
|
||||
}{}
|
||||
|
||||
\begin{definition}
|
||||
A \vocab{prewellordering} $\preceq$
|
||||
|
@ -141,7 +144,7 @@ is a map $\phi\colon C \to \Ord$.
|
|||
\item reflexive,
|
||||
\item transitive,
|
||||
\item total (any two $x,y$ are comparable),
|
||||
\item $\prec$ ($x \prec y \iff x \preceq y \land y \not\preceq x$) is well-founded,
|
||||
\item $\prec$ \gist{($x \prec y \iff x \preceq y \land y \not\preceq x$)}{} is well-founded,
|
||||
in the sense that there are no descending infinite chains.
|
||||
\end{itemize}
|
||||
\end{definition}
|
||||
|
@ -149,7 +152,7 @@ is a map $\phi\colon C \to \Ord$.
|
|||
\begin{itemize}
|
||||
\item A prewellordering may not be a linear order since
|
||||
it is not necessarily antisymmetric.
|
||||
\item The linearly ordered wellfounded sets are exactly the wellordered sets.
|
||||
%\item The linearly ordered wellfounded sets are exactly the wellordered sets.
|
||||
\item Modding out $x \sim y :\iff x \preceq y \land y \preceq x$
|
||||
turns a prewellordering into a wellordering.
|
||||
\end{itemize}
|
||||
|
@ -163,11 +166,11 @@ between downwards-closed ranks and prewellorderings:
|
|||
\phi_{\preceq}&\longmapsfrom& \preceq,
|
||||
\end{IEEEeqnarray*}
|
||||
where $\phi_\preceq(x)$ is defined as
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\gist{\begin{IEEEeqnarray*}{rCl}
|
||||
\phi_{\preceq}(x) &\coloneqq &0 \text{ if $x$ is minimal},\\
|
||||
\phi_{\preceq}(x) &\coloneqq & \sup \{\phi_{\preceq}(y) + 1 : y \prec x\},
|
||||
\end{IEEEeqnarray*}
|
||||
i.e.
|
||||
i.e.}{}
|
||||
\[
|
||||
\phi_{\preceq}(x) = \otp\left(\faktor{\{y \in C : y \prec x\}}{\sim}\right).
|
||||
\]
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
\lecture{14}{2023-12-01}{}
|
||||
|
||||
% TODO ANKI-MARKER
|
||||
\begin{theorem}[Moschovakis]
|
||||
If $C$ is coanalytic,
|
||||
then there exists a $\Pi^1_1$-rank on $C$.
|
||||
|
|
Loading…
Reference in a new issue