Compare commits
No commits in common. "e887f46a5df4c0a1c9d72b854b676001fabad050" and "9d601c2e62f6fd8ded70e3e265b429843d0baeac" have entirely different histories.
e887f46a5d
...
9d601c2e62
14 changed files with 148 additions and 196 deletions
|
@ -164,10 +164,8 @@
|
||||||
\]
|
\]
|
||||||
\end{notation}
|
\end{notation}
|
||||||
|
|
||||||
\gist{%
|
|
||||||
The following similar to Fubini,
|
The following similar to Fubini,
|
||||||
but for meager sets:
|
but for meager sets:
|
||||||
}{}
|
|
||||||
|
|
||||||
\begin{theorem}[Kuratowski-Ulam]
|
\begin{theorem}[Kuratowski-Ulam]
|
||||||
\yalabel{Kuratowski-Ulam}{Kuratowski-Ulam}{thm:kuratowskiulam}
|
\yalabel{Kuratowski-Ulam}{Kuratowski-Ulam}{thm:kuratowskiulam}
|
||||||
|
@ -195,7 +193,6 @@ but for meager sets:
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{refproof}{thm:kuratowskiulam}
|
\begin{refproof}{thm:kuratowskiulam}
|
||||||
\gist{
|
|
||||||
(ii) and (iii) are equivalent by passing to the complement.
|
(ii) and (iii) are equivalent by passing to the complement.
|
||||||
|
|
||||||
\begin{claim}%[1a]
|
\begin{claim}%[1a]
|
||||||
|
@ -289,11 +286,16 @@ but for meager sets:
|
||||||
$M_x$ is comeager
|
$M_x$ is comeager
|
||||||
as a countable intersection of comeager sets.
|
as a countable intersection of comeager sets.
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
}{}
|
|
||||||
|
|
||||||
|
|
||||||
% \phantom\qedhere
|
% \phantom\qedhere
|
||||||
% \end{refproof}
|
% \end{refproof}
|
||||||
% TODO fix claim numbers
|
% TODO fix claim numbers
|
||||||
|
|
||||||
|
\gist{%
|
||||||
|
\begin{remark}
|
||||||
|
Suppose that $A$ has the BP.
|
||||||
|
Then there is an open $U$ such that
|
||||||
|
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
|
||||||
|
Then $A = U \symdif M$.
|
||||||
|
\end{remark}
|
||||||
|
}{}
|
||||||
|
|
|
@ -1,8 +1,8 @@
|
||||||
\lecture{06}{2023-11-03}{}
|
\lecture{06}{2023-11-03}{}
|
||||||
\gist{%
|
|
||||||
% \begin{refproof}{thm:kuratowskiulam}
|
% \begin{refproof}{thm:kuratowskiulam}
|
||||||
\begin{enumerate}[(i)]
|
\begin{enumerate}[(i)]
|
||||||
\item Let $A$ be a set with the Baire property.
|
\item Let $A$ be a set with the Baire Property.
|
||||||
Write $A = U \symdif M$
|
Write $A = U \symdif M$
|
||||||
for $U$ open and $M$ meager.
|
for $U$ open and $M$ meager.
|
||||||
Then for all $x$,
|
Then for all $x$,
|
||||||
|
@ -51,8 +51,8 @@
|
||||||
Towards a contradiction suppose that $A$ is not meager.
|
Towards a contradiction suppose that $A$ is not meager.
|
||||||
Then $U$ is not meager.
|
Then $U$ is not meager.
|
||||||
Since $X \times Y$ is second countable,
|
Since $X \times Y$ is second countable,
|
||||||
we have that $U$ is a countable union of open rectangles.
|
we have that $A$ is a countable union of open rectangles.
|
||||||
At least one of them, say $G \times H \subseteq U$,
|
At least one of them, say $G \times H \subseteq A$,
|
||||||
is not meager.
|
is not meager.
|
||||||
By \yaref{thm:kuratowskiulam:c2},
|
By \yaref{thm:kuratowskiulam:c2},
|
||||||
both $G$ and $H$ are not meager.
|
both $G$ and $H$ are not meager.
|
||||||
|
@ -71,59 +71,7 @@
|
||||||
``$\implies$''
|
``$\implies$''
|
||||||
This is \yaref{thm:kuratowskiulam:c1b}.
|
This is \yaref{thm:kuratowskiulam:c1b}.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
}{%
|
|
||||||
\begin{itemize}
|
|
||||||
\item (ii) $\iff$ (iii): pass to complement.
|
|
||||||
\item $F \overset{\text{closed}}{\subseteq} X \times Y$ nwd.
|
|
||||||
$\implies \{x \in X : F_x \text{ nwd}\} $ comeager:
|
|
||||||
\begin{itemize}
|
|
||||||
\item $W = F^c$ is open and dense, show that $\{x : W_x \text{ dense}\}$
|
|
||||||
is comeager.
|
|
||||||
\item $(V_n)$ enumeration of basis. Show that $U_n \coloneqq \{x : V_n \cap W_x \neq \emptyset\}$
|
|
||||||
is comeager for all $n$.
|
|
||||||
\item $U_n$ is open (projection of open) and dense ($W$ is dense, hence $W \cap ( U \times V_n) \neq \emptyset$ for $U$ open).
|
|
||||||
\end{itemize}
|
|
||||||
\item $F \subseteq X \times Y$ is nwd $\implies \{x \in X: F_x \text{ nwd}\}$ comeager.
|
|
||||||
(consider $\overline{F}$).
|
|
||||||
\item (ii) $\implies$:
|
|
||||||
$M \subseteq X \times Y$ meager $\implies \{x \in X: M_x \text{ meager}\}$ comeager
|
|
||||||
(write $M$ as ctbl. union of nwd.)
|
|
||||||
\item (i): If $A$ has the Baire Property,
|
|
||||||
then $A = U \symdif M$, $A_x = U_x \symdif M_x$,
|
|
||||||
$U_x$ open and $\{x : M_x \text{ meager}\}$ comeager
|
|
||||||
$\implies$ (i).
|
|
||||||
\item $P \subseteq X$, $Q \subseteq Y$ BP,
|
|
||||||
then $P \times Q$ meager $\iff$ $P$ or $Q$ meager.
|
|
||||||
\begin{itemize}
|
|
||||||
\item $\impliedby$ easy
|
|
||||||
\item $\implies$ Suppose $P \times Q$ meager, $P$ not meager.
|
|
||||||
$\emptyset\neq P \cap \underbrace{\{x : (P \times Q)_x \text{ meager} \}}_{\text{comeager}} \ni x$.
|
|
||||||
$(P \times Q)_x = Q$ is meager.
|
|
||||||
\end{itemize}
|
|
||||||
\item (ii) $\impliedby$:
|
|
||||||
\begin{itemize}
|
|
||||||
\item $A$ BP, $\{x : A_x \text{ meager}\}$ comeager.
|
|
||||||
\item $A = U \symdif M$.
|
|
||||||
\item Suppose $A$ not meager $\leadsto$ $U$ not meager
|
|
||||||
$\leadsto \exists G \times H \subseteq U$ not meager.
|
|
||||||
\item $G$ and $H$ are not meager.
|
|
||||||
\item $\exists x_0 \in G \cap \underbrace{\{x: A_x \text{ meager } \land M_x \text{ meager}\}}_\text{comeager}$.
|
|
||||||
\item $H$ meager, as
|
|
||||||
\[
|
|
||||||
H \subseteq U_{x_0} \subseteq A_{x_0} \cup M_{x_0}.
|
|
||||||
\]
|
|
||||||
\end{itemize}
|
|
||||||
\end{itemize}
|
|
||||||
}
|
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
\gist{%
|
|
||||||
\begin{remark}
|
|
||||||
Suppose that $A$ has the BP.
|
|
||||||
Then there is an open $U$ such that
|
|
||||||
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
|
|
||||||
Then $A = U \symdif M$.
|
|
||||||
\end{remark}
|
|
||||||
}{}
|
|
||||||
|
|
||||||
\section{Borel sets} % TODO: fix chapters
|
\section{Borel sets} % TODO: fix chapters
|
||||||
|
|
||||||
|
|
|
@ -127,7 +127,7 @@ since $X^X$ has these properties.
|
||||||
|
|
||||||
\begin{lemma}[Ellis–Numakura]
|
\begin{lemma}[Ellis–Numakura]
|
||||||
\yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura}
|
\yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura}
|
||||||
Every non-empty compact semigroup
|
Every compact semigroup
|
||||||
contains an \vocab{idempotent} element,
|
contains an \vocab{idempotent} element,
|
||||||
i.e.~$f$ such that $f^2 = f$.
|
i.e.~$f$ such that $f^2 = f$.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
|
|
|
@ -20,6 +20,9 @@
|
||||||
\end{remark}
|
\end{remark}
|
||||||
}{}
|
}{}
|
||||||
|
|
||||||
|
|
||||||
|
% TODO ANKI-MARKER
|
||||||
|
|
||||||
We will be studying projections to the first $d$ coordinates,
|
We will be studying projections to the first $d$ coordinates,
|
||||||
i.e.
|
i.e.
|
||||||
\[
|
\[
|
||||||
|
@ -46,9 +49,6 @@ Let $\pi_n\colon X \to (S^1)^n$ be the projection to the first $n$
|
||||||
coordinates.
|
coordinates.
|
||||||
|
|
||||||
|
|
||||||
% TODO ANKI-MARKER
|
|
||||||
|
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
\label{lem:lec20:1}
|
\label{lem:lec20:1}
|
||||||
Let $x,x' \in X$ with $\pi_n(x) = \pi_n(x')$
|
Let $x,x' \in X$ with $\pi_n(x) = \pi_n(x')$
|
||||||
|
|
|
@ -146,7 +146,9 @@ For this we define
|
||||||
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
|
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
|
||||||
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
|
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
|
||||||
\item Minimality:%
|
\item Minimality:%
|
||||||
\notexaminable{%
|
\gist{%
|
||||||
|
\footnote{This is not relevant for the exam.}
|
||||||
|
|
||||||
Let $\langle E_n : n < \omega \rangle$
|
Let $\langle E_n : n < \omega \rangle$
|
||||||
be an enumeration of a countable basis for $\mathbb{K}^I$.
|
be an enumeration of a countable basis for $\mathbb{K}^I$.
|
||||||
|
|
||||||
|
@ -163,10 +165,11 @@ For this we define
|
||||||
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
||||||
Since the flow is distal, it suffices to show
|
Since the flow is distal, it suffices to show
|
||||||
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
||||||
}
|
}{ Not relevant for the exam.}
|
||||||
|
|
||||||
\item The order of the flow is $\eta$:%
|
\item The order of the flow is $\eta$:%
|
||||||
\notexaminable{%
|
\gist{%
|
||||||
|
\footnote{This is not relevant for the exam.}
|
||||||
Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
||||||
Consider the flows we get from $(f_i)_{i < j}$
|
Consider the flows we get from $(f_i)_{i < j}$
|
||||||
resp.~$(f_i)_{i \le j}$
|
resp.~$(f_i)_{i \le j}$
|
||||||
|
@ -190,6 +193,6 @@ For this we define
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
Beleznay and Foreman show that this is open and dense.%
|
Beleznay and Foreman show that this is open and dense.%
|
||||||
% TODO similarities to the lemma used today
|
% TODO similarities to the lemma used today
|
||||||
}
|
}{ Not relevant for the exam.}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
|
@ -37,9 +37,10 @@ Let $I$ be a linear order
|
||||||
S & \coloneqq & \{ x \in \LO(\N) :& x \text{ has a least element},\\
|
S & \coloneqq & \{ x \in \LO(\N) :& x \text{ has a least element},\\
|
||||||
&&& \text{for any $t$, there is $t \oplus 1$, the successor of $t$.}\}
|
&&& \text{for any $t$, there is $t \oplus 1$, the successor of $t$.}\}
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
$S$ is Borel.\footnote{cf.~\yaref{s12e1}}
|
\todo{Exercise sheet 12}
|
||||||
|
$S$ is Borel.
|
||||||
|
|
||||||
We will
|
We will % TODO ?
|
||||||
construct a reduction
|
construct a reduction
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
M \colon S &\longrightarrow & C(\mathbb{K}^\N,\mathbb{K})^\N. %\\
|
M \colon S &\longrightarrow & C(\mathbb{K}^\N,\mathbb{K})^\N. %\\
|
||||||
|
|
|
@ -1,10 +1,10 @@
|
||||||
\lecture{24}{2024-01-23}{Combinatorics!}
|
\lecture{24}{2024-01-23}{Combinatorics!}
|
||||||
|
|
||||||
% ANKI 2
|
|
||||||
|
|
||||||
|
|
||||||
\subsection{Applications to Combinatorics} % Ramsey Theory}
|
\subsection{Applications to Combinatorics} % Ramsey Theory}
|
||||||
|
|
||||||
|
% TODO Define Ultrafilter
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
An \vocab{ultrafilter} on $\N$ (or any other set)
|
An \vocab{ultrafilter} on $\N$ (or any other set)
|
||||||
is a family $\cU \subseteq \cP(\N)$
|
is a family $\cU \subseteq \cP(\N)$
|
||||||
|
@ -44,7 +44,6 @@
|
||||||
for $\{ n \in \N : \phi(n)\} \in \cU$.
|
for $\{ n \in \N : \phi(n)\} \in \cU$.
|
||||||
We say that $\phi(n)$ holds for \vocab{$\cU$-almost all} $n$.
|
We say that $\phi(n)$ holds for \vocab{$\cU$-almost all} $n$.
|
||||||
\end{notation}
|
\end{notation}
|
||||||
\gist{%
|
|
||||||
\begin{observe}
|
\begin{observe}
|
||||||
Let $\phi(\cdot )$, $\psi(\cdot )$ be formulas.
|
Let $\phi(\cdot )$, $\psi(\cdot )$ be formulas.
|
||||||
|
|
||||||
|
@ -54,7 +53,6 @@
|
||||||
\item $(\cU n) ~\lnot \phi(n) \iff \lnot (\cU n)~ \phi(n)$.
|
\item $(\cU n) ~\lnot \phi(n) \iff \lnot (\cU n)~ \phi(n)$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{observe}
|
\end{observe}
|
||||||
}{}
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
\label{lem:ultrafilterlimit}
|
\label{lem:ultrafilterlimit}
|
||||||
Let $X $ be a compact Hausdorff space.
|
Let $X $ be a compact Hausdorff space.
|
||||||
|
@ -72,10 +70,7 @@
|
||||||
\begin{notation}
|
\begin{notation}
|
||||||
In this case we write $x = \ulim{\cU}_n x_n$.
|
In this case we write $x = \ulim{\cU}_n x_n$.
|
||||||
\end{notation}
|
\end{notation}
|
||||||
\begin{refproof}{lem:ultrafilterlimit}\footnote{The proof from the lecture only works
|
\begin{refproof}{lem:ultrafilterlimit}[sketch]
|
||||||
for metric spaces.}
|
|
||||||
\gist{
|
|
||||||
For metric spaces:
|
|
||||||
Whenever we write $X = Y \cup Z$
|
Whenever we write $X = Y \cup Z$
|
||||||
we have $(\cU n) x_n \in Y$
|
we have $(\cU n) x_n \in Y$
|
||||||
or $(\cU n) x_n \in Z$.
|
or $(\cU n) x_n \in Z$.
|
||||||
|
@ -90,13 +85,8 @@
|
||||||
$C \in \cP_{n+1} \implies \exists C \subseteq D \in \cP_{n}$
|
$C \in \cP_{n+1} \implies \exists C \subseteq D \in \cP_{n}$
|
||||||
and
|
and
|
||||||
$C_1 \supseteq C_2 \supseteq \ldots$, $C_i \in \cP_i $ $\implies | \bigcap_{i} C_i| = 1$.
|
$C_1 \supseteq C_2 \supseteq \ldots$, $C_i \in \cP_i $ $\implies | \bigcap_{i} C_i| = 1$.
|
||||||
It is clear that we can do this for metric spaces.
|
It is clear that we can do this for metric spaces,
|
||||||
|
but such partition can be found for compact Hausdorff spaces as well.
|
||||||
}{}
|
|
||||||
See \yaref{thm:uflimit} for the full proof.
|
|
||||||
See
|
|
||||||
\yaref{fact:compactiffufconv} and
|
|
||||||
\yaref{fact:hdifffilterlimit} for a more general statement.
|
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
|
||||||
Let $\beta \N$ be the Čech-Stone compactification of $\N$,
|
Let $\beta \N$ be the Čech-Stone compactification of $\N$,
|
||||||
|
@ -130,14 +120,15 @@ This gives $+ \colon \beta\N \times \beta\N \to \beta\N$.
|
||||||
|
|
||||||
This is not commutative,
|
This is not commutative,
|
||||||
but associative and $a \mapsto a + b$ is continuous
|
but associative and $a \mapsto a + b$ is continuous
|
||||||
for a fixed $b$,
|
for a fixed $b$.
|
||||||
i.e.~it is a left compact topological semigroup.
|
This is called a left compact topological semigroup.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Let $X$ be a compact Hausdorff space
|
Let $X$ be a compact Hausdorff space
|
||||||
and let $T \colon X \to X$ be continuous.%
|
and let $T \colon X \to X$ be continuous.%
|
||||||
\footnote{Note that this may not be a homeomorphism, i.e.~we only get a $\N$-action
|
\footnote{Note that this need not be a homeomorphism, i.e.~we only get a $\N$-action
|
||||||
but not a $\Z$-action.}
|
but not a $\Z$-action.}
|
||||||
|
|
||||||
For any $\cU \in \beta\N$, we define $T^{\cU}$ by
|
For any $\cU \in \beta\N$, we define $T^{\cU}$ by
|
||||||
|
@ -166,6 +157,7 @@ is not necessarily continuous.
|
||||||
\[
|
\[
|
||||||
\forall n.~\exists k < M.~ T^{n+k}(x) \in G.
|
\forall n.~\exists k < M.~ T^{n+k}(x) \in G.
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
Let $\cU, \cV \in \beta\N$
|
Let $\cU, \cV \in \beta\N$
|
||||||
|
|
|
@ -7,17 +7,15 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
||||||
where a basis consist of sets
|
where a basis consist of sets
|
||||||
$V_A \coloneqq \{p \in \beta\N : A \in p\}, A \subseteq \N$.
|
$V_A \coloneqq \{p \in \beta\N : A \in p\}, A \subseteq \N$.
|
||||||
|
|
||||||
\gist{%
|
|
||||||
(For $A, B \subseteq \N$ we have $V_{A \cap B} = V_{A} \cap V_B$
|
(For $A, B \subseteq \N$ we have $V_{A \cap B} = V_{A} \cap V_B$
|
||||||
and $\beta\N = V_\N$.)
|
and $\beta\N = V_\N$.)
|
||||||
}{}
|
|
||||||
|
|
||||||
\item Note also that for $A, B \subseteq \N$,
|
\item Note also that for $A, B \subseteq \N$,
|
||||||
$V_{A \cup B} = V_A \cup V_B$,
|
$V_{A \cup B} = V_A \cup V_B$,
|
||||||
$V_{A^c} = \beta\N \setminus V_A$.
|
$V_{A^c} = \beta\N \setminus V_A$.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{fact}
|
\end{fact}
|
||||||
\gist{%
|
|
||||||
\begin{observe}
|
\begin{observe}
|
||||||
\label{ob:bNclopenbasis}
|
\label{ob:bNclopenbasis}
|
||||||
Note that the basis is clopen. In particular
|
Note that the basis is clopen. In particular
|
||||||
|
@ -27,7 +25,6 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
||||||
If $F$ is closed, then $U = \beta\N \setminus F = \bigcup_{i\in I} V_{A_i}$,
|
If $F$ is closed, then $U = \beta\N \setminus F = \bigcup_{i\in I} V_{A_i}$,
|
||||||
so $F = \bigcap_{i \in I} V_{\N \setminus A_i}$.
|
so $F = \bigcap_{i \in I} V_{\N \setminus A_i}$.
|
||||||
\end{observe}
|
\end{observe}
|
||||||
}{}
|
|
||||||
|
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
\label{fact:bNhd}
|
\label{fact:bNhd}
|
||||||
|
@ -57,14 +54,12 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
||||||
$\bigcap_{j=1}^k F_{i_j} \neq \emptyset$.
|
$\bigcap_{j=1}^k F_{i_j} \neq \emptyset$.
|
||||||
|
|
||||||
We need to show that $\bigcap_{i \in I} F_i \neq \emptyset$.
|
We need to show that $\bigcap_{i \in I} F_i \neq \emptyset$.
|
||||||
\gist{%
|
|
||||||
Replacing each $F_i$ by $V_{A_j^i}$ such
|
Replacing each $F_i$ by $V_{A_j^i}$ such
|
||||||
that $F_i = \bigcap_{j \in J_i} V_{A_j^i}$
|
that $F_i = \bigcap_{j \in J_i} V_{A_j^i}$
|
||||||
(cf.~\yaref{ob:bNclopenbasis})
|
(cf.~\yaref{ob:bNclopenbasis})
|
||||||
we may assume that $F_i$ is of the form $V_{A_i}$.
|
we may assume that $F_i$ is of the form $V_{A_i}$.
|
||||||
We get $\{F_i = V_{A_i} : i \in I\}$
|
We get $\{F_i = V_{A_i} : i \in I\}$
|
||||||
with the finite intersection property.
|
with the finite intersection property.
|
||||||
}{Wlog.~$F_i = V_{A_i}$.}
|
|
||||||
Hence
|
Hence
|
||||||
$\{A_i : i \in I\} \mathbin{\text{\reflectbox{$\coloneqq$}}} \cF_0$
|
$\{A_i : i \in I\} \mathbin{\text{\reflectbox{$\coloneqq$}}} \cF_0$
|
||||||
has the finite intersection property.
|
has the finite intersection property.
|
||||||
|
@ -83,10 +78,11 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
||||||
\item $ \{\hat{n}\} $ is open in $\beta\N$ for all $n \in \N$.
|
\item $ \{\hat{n}\} $ is open in $\beta\N$ for all $n \in \N$.
|
||||||
\item $\N \subseteq \beta\N$ is dense.
|
\item $\N \subseteq \beta\N$ is dense.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
\todo{Easy exercise}
|
||||||
|
% TODO write down (exercise)
|
||||||
\end{fact}
|
\end{fact}
|
||||||
|
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
\label{thm:uflimit}
|
|
||||||
For every compact Hausdorff space $X$,
|
For every compact Hausdorff space $X$,
|
||||||
a sequence $(x_n)$ in $X$,
|
a sequence $(x_n)$ in $X$,
|
||||||
and $\cU \in \beta\N$,
|
and $\cU \in \beta\N$,
|
||||||
|
@ -136,11 +132,6 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
||||||
% TODO general fact: continuous functions agreeing on a dense set
|
% TODO general fact: continuous functions agreeing on a dense set
|
||||||
% agree everywhere (fact section)
|
% agree everywhere (fact section)
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{trivial}+
|
|
||||||
$\beta$ is a functor from the category of topological
|
|
||||||
spaces to the category of compact Hausdorff spaces.
|
|
||||||
It is left adjoint to the inclusion functor.
|
|
||||||
\end{trivial}
|
|
||||||
|
|
||||||
% RECAP
|
% RECAP
|
||||||
\gist{%
|
\gist{%
|
||||||
|
@ -225,12 +216,13 @@ to obtain
|
||||||
Take $x_2 > x_1$ that satisfies this.
|
Take $x_2 > x_1$ that satisfies this.
|
||||||
\item Suppose we have chosen $\langle x_i : i < n \rangle$.
|
\item Suppose we have chosen $\langle x_i : i < n \rangle$.
|
||||||
Since $\cU$ is idempotent, we have
|
Since $\cU$ is idempotent, we have
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\[
|
||||||
(\cU n)&& n \in P\\
|
(\cU n)[
|
||||||
&\land& (\cU_k) n + k \in P\\
|
n \in P
|
||||||
&\land& \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n \in P)\\
|
\land (\cU_k) n + k \in P
|
||||||
&\land& (\cU_k)\left( \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n + k) \in P\right).
|
\land \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n \in P)
|
||||||
\end{IEEEeqnarray*}
|
\land (\cU_k)\left( \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n + k) \in P\right).
|
||||||
|
\]
|
||||||
Chose $x_n > x_{n-1}$ that satisfies this.
|
Chose $x_n > x_{n-1}$ that satisfies this.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
Set $H \coloneqq \{x_i : i < \omega\}$.
|
Set $H \coloneqq \{x_i : i < \omega\}$.
|
||||||
|
@ -239,3 +231,6 @@ to obtain
|
||||||
|
|
||||||
Next time we'll see another proof of this theorem.
|
Next time we'll see another proof of this theorem.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -3,36 +3,12 @@
|
||||||
% Points: 15 / 16
|
% Points: 15 / 16
|
||||||
|
|
||||||
\nr 1
|
\nr 1
|
||||||
Let $(X,d)$ be a metric space and $\emptyset \neq A \subseteq X$.
|
\todo{handwritten solution}
|
||||||
Let $d(x,A) \coloneqq \inf(d(x,a) : a \in A\}$.
|
|
||||||
|
|
||||||
\begin{itemize}
|
|
||||||
\item $d(-,A)$ is uniformly continuous:
|
|
||||||
|
|
||||||
Clearly $|d(x,A) - d(y,A)| \le d(x,y)$.
|
|
||||||
\todo{Add details}
|
|
||||||
\item $d(x,A) = 0 \iff x \in \overline{A}$.
|
|
||||||
|
|
||||||
$d(x,A) = 0$ iff there is a sequence in $A$
|
|
||||||
converging towards $x$ iff $x \in \overline{A}$.
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
|
|
||||||
\nr 2
|
\nr 2
|
||||||
|
|
||||||
Let $X$ be a discrete space.
|
|
||||||
For $f,g \in X^{\N}$ define
|
|
||||||
\[
|
|
||||||
d(f,g) \coloneqq \begin{cases}
|
|
||||||
(1 + \min \{n: f(n) \neq g(n)\})^{-1} &: f \neq g,\\
|
|
||||||
0 &: f= g.
|
|
||||||
\end{cases}
|
|
||||||
\]
|
|
||||||
|
|
||||||
|
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
\item $d$ is an \vocab{ultrametric},
|
\item $d$ is an ultrametric:
|
||||||
i.e.~$d(f,g) \le \max \{d(f,h), d(g,h)\}$ for all $f,g,h \in X^{\N}$ :
|
|
||||||
|
|
||||||
Let $f,g,h \in X^{\N}$.
|
Let $f,g,h \in X^{\N}$.
|
||||||
|
|
||||||
|
@ -94,15 +70,10 @@ d(f,g) \coloneqq \begin{cases}
|
||||||
|
|
||||||
\nr 3
|
\nr 3
|
||||||
|
|
||||||
Consider $\N$ as a discrete space and $\N^{\N}$ with the product topology.
|
|
||||||
Let
|
|
||||||
\[
|
|
||||||
S_{\infty} = \{f\colon \N \to \N \text{ bijective}\} \subseteq \N^{\N}.
|
|
||||||
\]
|
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
\item $S_{\infty}$ is a Polish space:
|
\item $S_{\infty}$ is a Polish space:
|
||||||
|
|
||||||
From \yaref{s1e2} we know that $\N^{\N}$ is Polish.
|
From (2) we know that $\N^{\N}$ is Polish.
|
||||||
Hence it suffices to show that $S_{\infty}$ is $G_{\delta}$
|
Hence it suffices to show that $S_{\infty}$ is $G_{\delta}$
|
||||||
with respect to $\N^\N$.
|
with respect to $\N^\N$.
|
||||||
|
|
||||||
|
@ -140,9 +111,69 @@ S_{\infty} = \{f\colon \N \to \N \text{ bijective}\} \subseteq \N^{\N}.
|
||||||
Clearly there cannot exist a finite subcover
|
Clearly there cannot exist a finite subcover
|
||||||
as $B$ is the disjoint union of the $B_j$.
|
as $B$ is the disjoint union of the $B_j$.
|
||||||
|
|
||||||
|
% TODO Think about this
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
\nr 4
|
\nr 4
|
||||||
|
|
||||||
|
% (uniform metric)
|
||||||
|
%
|
||||||
|
% \begin{enumerate}[(a)]
|
||||||
|
% \item $d_u$ is a metric on $\cC(X,Y)$:
|
||||||
|
%
|
||||||
|
% It is clear that $d_u(f,f) = 0$.
|
||||||
|
%
|
||||||
|
% Let $f \neq g$. Then there exists $x \in X$ with
|
||||||
|
% $f(x) \neq g(x)$, hence $d_u(f,g) \ge d(f(x), g(x)) > 0$.
|
||||||
|
%
|
||||||
|
% Since $d$ is symmetric, so is $d_u$.
|
||||||
|
%
|
||||||
|
% Let $f,g,h \in \cC(X,Y)$.
|
||||||
|
% Take some $\epsilon > 0$
|
||||||
|
% choose $x_1, x_2 \in X$
|
||||||
|
% with $d_u(f,g) \le d(f(x_1), g(x_1)) + \epsilon$,
|
||||||
|
% $d_u(g,h) \le d(g(x_2), h(x_2)) + \epsilon$.
|
||||||
|
%
|
||||||
|
% Then for all $x \in X$
|
||||||
|
% \begin{IEEEeqnarray*}{rCl}
|
||||||
|
% d(f(x), h(x)) &\le &
|
||||||
|
% d(f(x), g(x)) + d(g(x), h(x))\\
|
||||||
|
% &\le & d(f(x_1), g(x_1)) + d(g(x_2), h(x_2))-2\epsilon\\
|
||||||
|
% &\le & d_u(f,g) + d_u(g,h) - 2\epsilon.
|
||||||
|
% \end{IEEEeqnarray*}
|
||||||
|
% Thus $d_u(f,g) \le d_u(f,g) + d_u(g,h) - 2\epsilon$.
|
||||||
|
% Taking $\epsilon \to 0$ yields the triangle inequality.
|
||||||
|
%
|
||||||
|
% \item $\cC(X,Y)$ is a Polish space:
|
||||||
|
% \todo{handwritten solution}
|
||||||
|
%
|
||||||
|
% \begin{itemize}
|
||||||
|
% \item $d_u$ is a complete metric:
|
||||||
|
%
|
||||||
|
% Let $(f_n)_n$ be a Cauchy series with respect to $d_u$.
|
||||||
|
%
|
||||||
|
% Then clearly $(f_n(x))_n$ is a Cauchy sequence with respect
|
||||||
|
% to $d$ for every $x$.
|
||||||
|
% Hence there exists a pointwise limit $f$ of the $f_n$.
|
||||||
|
% We need to show that $f$ is continuous.
|
||||||
|
%
|
||||||
|
% %\todo{something something uniform convergence theorem}
|
||||||
|
%
|
||||||
|
% \item $(\cC(X,Y), d_u)$ is separable:
|
||||||
|
%
|
||||||
|
% Since $Y$ is separable, there exists a countable
|
||||||
|
% dense subset $S \subseteq Y$.
|
||||||
|
%
|
||||||
|
% Consider $\cC(X,S) \subseteq \cC(X,Y)$.
|
||||||
|
% Take some $f \in \cC(X,Y)$.
|
||||||
|
% Since $X$ is compact,
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% % TODO
|
||||||
|
%
|
||||||
|
% \end{itemize}
|
||||||
|
% \end{enumerate}
|
||||||
|
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
Let $X $ be a compact Hausdorff space.
|
Let $X $ be a compact Hausdorff space.
|
||||||
Then the following are equivalent:
|
Then the following are equivalent:
|
||||||
|
@ -174,7 +205,7 @@ S_{\infty} = \{f\colon \N \to \N \text{ bijective}\} \subseteq \N^{\N}.
|
||||||
Let $X$ be compact Polish\footnote{compact metrisable $\implies$ compact Polish}
|
Let $X$ be compact Polish\footnote{compact metrisable $\implies$ compact Polish}
|
||||||
and $Y $ Polish.
|
and $Y $ Polish.
|
||||||
Let $\cC(X,Y)$ be the set of continuous functions $X \to Y$.
|
Let $\cC(X,Y)$ be the set of continuous functions $X \to Y$.
|
||||||
Consider the \vocab{uniform metric} $d_u(f,g) \coloneqq \sup_{x \in X} |d(f(x), g(x))|$.
|
Consider the metric $d_u(f,g) \coloneqq \sup_{x \in X} |d(f(x), g(x))|$.
|
||||||
Clearly $d_u$ is a metric.
|
Clearly $d_u$ is a metric.
|
||||||
|
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
|
@ -212,7 +243,7 @@ Clearly $d_u$ is a metric.
|
||||||
for each $y \in X_m$.
|
for each $y \in X_m$.
|
||||||
Then $\bigcup_{m,n} D_{m,n}$ is dense in $\cC(X,Y)$:
|
Then $\bigcup_{m,n} D_{m,n}$ is dense in $\cC(X,Y)$:
|
||||||
Indeed if $f \in \cC(X,Y)$ and $\eta > 0$,
|
Indeed if $f \in \cC(X,Y)$ and $\eta > 0$,
|
||||||
we find $n > \frac{3}{\eta}$ and $m$ such that $f \in C_{m,n}$,
|
we finde $n > \frac{3}{\eta}$ and $m$ such that $f \in C_{m,n}$,
|
||||||
since $f$ is uniformly continuous.
|
since $f$ is uniformly continuous.
|
||||||
Let $g \in D_{m,n}$ be such that $\forall y \in X_m.~d(f(y), g(y)) < \frac{1}{n+1}$.
|
Let $g \in D_{m,n}$ be such that $\forall y \in X_m.~d(f(y), g(y)) < \frac{1}{n+1}$.
|
||||||
We have $d_u(f,g) \le \eta$,
|
We have $d_u(f,g) \le \eta$,
|
||||||
|
|
|
@ -12,14 +12,6 @@
|
||||||
|
|
||||||
\nr 1
|
\nr 1
|
||||||
|
|
||||||
Let $X$ be a Polish space.
|
|
||||||
Then there exists an injection $f\colon X \to 2^\omega$
|
|
||||||
such that for each $n < \omega$,
|
|
||||||
the set $f^{-1}(\{(y_n) \in 2^\omega : y_n = 1\})$
|
|
||||||
is open.
|
|
||||||
Moreover if $V \subseteq 2^{ \omega}$ is closed,
|
|
||||||
then $f^{-1}(V)$ is $G_\delta$.
|
|
||||||
|
|
||||||
Let $(U_i)_{i < \omega}$ be a countable base of $X$.
|
Let $(U_i)_{i < \omega}$ be a countable base of $X$.
|
||||||
Define
|
Define
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
@ -27,7 +19,6 @@ Define
|
||||||
x &\longmapsto & (x_i)_{i < \omega}
|
x &\longmapsto & (x_i)_{i < \omega}
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
where $x_i = 1$ iff $x \in U_i$ and $x_i = 0$ otherwise.
|
where $x_i = 1$ iff $x \in U_i$ and $x_i = 0$ otherwise.
|
||||||
\gist{
|
|
||||||
Then $f^{-1}(\{y = (y_n) \in 2^\omega | y_n = 1\}) = U_n$
|
Then $f^{-1}(\{y = (y_n) \in 2^\omega | y_n = 1\}) = U_n$
|
||||||
is open.
|
is open.
|
||||||
We have that $f$ is injective since $X$ is T1.
|
We have that $f$ is injective since $X$ is T1.
|
||||||
|
@ -60,21 +51,17 @@ Since $2^{n} \setminus \left( \prod_{i < n} X_i \right)$
|
||||||
is finite, we get that
|
is finite, we get that
|
||||||
$f^{-1}(2^{\omega} \setminus ((\prod_{i <n} X_{i}) \times 2^{\omega}))$
|
$f^{-1}(2^{\omega} \setminus ((\prod_{i <n} X_{i}) \times 2^{\omega}))$
|
||||||
is $G_\delta$ as a finite union of $G_{\delta}$ sets.
|
is $G_\delta$ as a finite union of $G_{\delta}$ sets.
|
||||||
}{}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\nr 2
|
\nr 2
|
||||||
Let $X$ be a Polish space. Then $X$ is homeomorphic to a closed subspace of $\R^{ \omega}$ :
|
|
||||||
\todo{handwritten solution}
|
\todo{handwritten solution}
|
||||||
% \begin{itemize}
|
(b)
|
||||||
% \item
|
Let $f(x^{(i)})$ be a sequence in $f(X)$.
|
||||||
% Let $f(x^{(i)})$ be a sequence in $f(X)$.
|
Suppose that $f(x^{(i)}) \to y$.
|
||||||
% Suppose that $f(x^{(i)}) \to y$.
|
We have that $f^{-1} = \pi_{\text{odd}}$ is continuous.
|
||||||
% We have that $f^{-1} = \pi_{\text{odd}}$ is continuous.
|
Then $\pi_{\text{odd}}(f(x^{(i)}) \to \pi_{\text{odd}}(y)$.
|
||||||
% Then $\pi_{\text{odd}}(f(x^{(i)}) \to \pi_{\text{odd}}(y)$.
|
Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$.
|
||||||
% Since $\pi_{\text{even}}$ converges, we have $\pi_{\text{odd}}(y) \in X$.
|
|
||||||
% \end{itemize}
|
|
||||||
|
|
||||||
|
|
||||||
\nr 3
|
\nr 3
|
||||||
|
@ -143,13 +130,6 @@ Let $X$ be a Polish space. Then $X$ is homeomorphic to a closed subspace of $\R^
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\nr 4
|
\nr 4
|
||||||
|
|
||||||
Define
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
f\colon \omega^{\omega} &\longrightarrow & 2^\omega \\
|
|
||||||
(x_n)&\longmapsto & 0^{x_0} 1 0^{x_1} 1 \ldots.
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
|
|
||||||
\begin{enumerate}[(1)]
|
\begin{enumerate}[(1)]
|
||||||
\item $f$ is a topological embedding:
|
\item $f$ is a topological embedding:
|
||||||
Consider a basic open set
|
Consider a basic open set
|
||||||
|
|
|
@ -8,7 +8,7 @@ Let $A \neq \emptyset$ be discrete.
|
||||||
For $D \subseteq A^{\omega}$,
|
For $D \subseteq A^{\omega}$,
|
||||||
let
|
let
|
||||||
\[
|
\[
|
||||||
T_D \coloneqq \{x\defon{n} \in A^{<\omega} | x \in D, n \in \N\}.
|
T_D \coloneqq \{x\defon{n} \in A^{<\omega} | x \in D, n \in \N\}..
|
||||||
\]
|
\]
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
\item For any $D \subseteq A^\omega$, $T_D$ is a pruned tree:
|
\item For any $D \subseteq A^\omega$, $T_D$ is a pruned tree:
|
||||||
|
|
|
@ -63,7 +63,7 @@ Flows are always on non-empty spaces $X$.
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
(i) $\implies$ (ii):
|
(i) $\implies$ (ii):
|
||||||
Let $(Y,T)$ be a subflow of $(X,T)$.
|
Let $(Y,T)$ be a subflow of $(X,T)$.
|
||||||
take $y \in Y$. Then $Ty$ is dense in $X$.
|
take $y \in Y$. Then $Ty$ is dense in mKX.
|
||||||
But $Ty \subseteq Y$, so $Y$ is dense in $X$.
|
But $Ty \subseteq Y$, so $Y$ is dense in $X$.
|
||||||
Since $Y$ is closed, we get $Y = X$.
|
Since $Y$ is closed, we get $Y = X$.
|
||||||
|
|
||||||
|
|
|
@ -84,12 +84,11 @@ with parameter $\alpha \in \R$, $1 \cdot x \coloneqq x + \alpha$.
|
||||||
\nr 4
|
\nr 4
|
||||||
|
|
||||||
% Examinable!
|
% Examinable!
|
||||||
% TODO THINK!
|
|
||||||
|
|
||||||
\gist{%
|
|
||||||
% RECAP
|
% RECAP
|
||||||
Let $X$ be a metrizable topological space
|
Let $X$ be a metrizable topological space.
|
||||||
and let $K(X) \coloneqq \{ K \subseteq X : K \text{ compact}\}$.
|
|
||||||
|
Let $K(X) \coloneqq \{ K \subseteq X : \text{ compact}\}$.
|
||||||
|
|
||||||
The Vietoris topology has a basis given by
|
The Vietoris topology has a basis given by
|
||||||
$\{K \subseteq U\}$, $U$ open (type 1)
|
$\{K \subseteq U\}$, $U$ open (type 1)
|
||||||
|
@ -104,21 +103,19 @@ $\max_{a \in A} d(a,B)$.
|
||||||
On previous sheets, we checked that $d_H$ is a metric.
|
On previous sheets, we checked that $d_H$ is a metric.
|
||||||
If $X$ is separable, then so is $K(X)$.
|
If $X$ is separable, then so is $K(X)$.
|
||||||
% END RECAP
|
% END RECAP
|
||||||
}{}
|
|
||||||
|
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
\label{fact:s12e4}
|
|
||||||
Let $(X,d)$ be a complete metric space.
|
Let $(X,d)$ be a complete metric space.
|
||||||
Then so is $(K(X), d_H)$.
|
Then so is $(K(X), d_H)$.
|
||||||
\end{fact}
|
\end{fact}
|
||||||
\begin{refproof}{fact:s12e4}
|
\begin{proof}
|
||||||
We need to show that $(K(X), d_H)$ is complete.
|
We need to show that $(K(X), d_H)$ is complete.
|
||||||
|
|
||||||
Let $(K_n)_{ n< \omega}$ be Cauchy in $(K(X), d_H)$.
|
Let $(K_n)_{ n< \omega}$ be Cauchy in $(K(X), d_H)$.
|
||||||
Wlog.~$K_n \neq \emptyset$ for all $n$.
|
Wlog.~$K_n \neq \emptyset$ for all $n$.
|
||||||
|
|
||||||
Let $K = \{ x \in X : \forall x \in U \overset{\text{open}}{\subseteq} X.~
|
Let $K = \{ x \in X : \forall x \in U \overset{\text{open}}{\subseteq} X.~
|
||||||
\text{ $U \cap K_n \neq \emptyset$ for infinitely many $n$}\}$.
|
\text{ $X$ intersects $K_n$ for infinitely many $n$}\}$.
|
||||||
|
|
||||||
Equivalently,
|
Equivalently,
|
||||||
$K = \{x : x \text{ is a cluster point of some subsequence $(x_n)$ with $x_n \in K_n$ for all $K_n$}\}$.
|
$K = \{x : x \text{ is a cluster point of some subsequence $(x_n)$ with $x_n \in K_n$ for all $K_n$}\}$.
|
||||||
|
@ -126,12 +123,12 @@ Then so is $(K(X), d_H)$.
|
||||||
(A cluster point is a limit of some subsequence).
|
(A cluster point is a limit of some subsequence).
|
||||||
|
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
\label{fact:s12e4:c1}
|
|
||||||
$K_n \to K$.
|
$K_n \to K$.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{refproof}{fact:s12e4:c1}
|
\begin{subproof}
|
||||||
Note that $K$ is closed (the complement is open).
|
Note that $K$ is closed (the complement is open).
|
||||||
|
|
||||||
|
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
$K \neq \emptyset$.
|
$K \neq \emptyset$.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
|
@ -162,7 +159,7 @@ Then so is $(K(X), d_H)$.
|
||||||
space, it is complete.
|
space, it is complete.
|
||||||
|
|
||||||
So it suffices to show that $K$ is totally bounded.
|
So it suffices to show that $K$ is totally bounded.
|
||||||
Let $\epsilon > 0$.
|
Let $\epsilon > 0$
|
||||||
Take $N$ such that $d_H(K_i,K_j) < \epsilon$
|
Take $N$ such that $d_H(K_i,K_j) < \epsilon$
|
||||||
for all $i,j \ge N$.
|
for all $i,j \ge N$.
|
||||||
|
|
||||||
|
@ -203,8 +200,9 @@ Then so is $(K(X), d_H)$.
|
||||||
To do this, construct a sequence of $y_{n_i} \in K_{n_i}$
|
To do this, construct a sequence of $y_{n_i} \in K_{n_i}$
|
||||||
starting with $y$ such that $d(y_{n_i}, y_{n_{i+1}}) < \frac{\epsilon}{2^{i+2}}$.
|
starting with $y$ such that $d(y_{n_i}, y_{n_{i+1}}) < \frac{\epsilon}{2^{i+2}}$.
|
||||||
(same trick as before).
|
(same trick as before).
|
||||||
\end{refproof}
|
\end{subproof}
|
||||||
\end{refproof}
|
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
If $X$ is compact metrisable,
|
If $X$ is compact metrisable,
|
||||||
|
@ -225,3 +223,9 @@ Then so is $(K(X), d_H)$.
|
||||||
|
|
||||||
|
|
||||||
% TODO complete and totally bounded Sutherland metric and topological spaces
|
% TODO complete and totally bounded Sutherland metric and topological spaces
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -2,7 +2,7 @@
|
||||||
\tutorial{15}{2024-01-31}{Additions}
|
\tutorial{15}{2024-01-31}{Additions}
|
||||||
|
|
||||||
The following is not relevant for the exam,
|
The following is not relevant for the exam,
|
||||||
but aims to give a more general picture.
|
but gives a more general picture.
|
||||||
|
|
||||||
Let $X$ be a topological space
|
Let $X$ be a topological space
|
||||||
and let $\cF$ be a filter on $ X$.
|
and let $\cF$ be a filter on $ X$.
|
||||||
|
@ -12,7 +12,6 @@ all sets containing an open neighbourhood of $x$,
|
||||||
is contained in $\cF$.
|
is contained in $\cF$.
|
||||||
|
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
\label{fact:hdifffilterlimit}
|
|
||||||
$X$ is Hausdorff iff every filter has at most one limit point.
|
$X$ is Hausdorff iff every filter has at most one limit point.
|
||||||
\end{fact}
|
\end{fact}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
@ -22,7 +21,6 @@ is contained in $\cF$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
\label{fact:compactiffufconv}
|
|
||||||
$X$ is (quasi-) compact
|
$X$ is (quasi-) compact
|
||||||
iff every ultrafilter converges.
|
iff every ultrafilter converges.
|
||||||
\end{fact}
|
\end{fact}
|
||||||
|
@ -31,7 +29,7 @@ is contained in $\cF$.
|
||||||
Let $\cU$ be an ultrafilter.
|
Let $\cU$ be an ultrafilter.
|
||||||
Consider the family $\cV = \{\overline{A} : A \in \cU\}$
|
Consider the family $\cV = \{\overline{A} : A \in \cU\}$
|
||||||
of closed sets.
|
of closed sets.
|
||||||
By the FIP we get that there exist
|
By the FIP we geht that there exist
|
||||||
$c \in X$ such that $c \in \overline{A}$ for all $A \in \cU$.
|
$c \in X$ such that $c \in \overline{A}$ for all $A \in \cU$.
|
||||||
Let $N$ be an open neighbourhood of $c$.
|
Let $N$ be an open neighbourhood of $c$.
|
||||||
If $N^c \in \cU$, then $c \in N^c \lightning$
|
If $N^c \in \cU$, then $c \in N^c \lightning$
|
||||||
|
@ -71,19 +69,17 @@ so is $f(\cB)$.
|
||||||
\end{fact}
|
\end{fact}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Consider $(f,g)^{-1}(\Delta) \supseteq A$.
|
Consider $(f,g)^{-1}(\Delta) \supseteq A$.
|
||||||
The RHS is a dense closed set, i.e.~the entire space.
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
We can uniquely extend a continuous $f\colon X \to Y$
|
We can uniquely extend $f\colon X \to Y$ continuous
|
||||||
to a continuous $\overline{f}\colon \beta X \to Y$
|
to a continuous $\overline{f}\colon \beta X \to Y$
|
||||||
by setting $\overline{f}(\cU) \coloneqq \lim_\cU f$.
|
by setting $\overline{f}(\cU) \coloneqq \lim_\cU f$.
|
||||||
|
|
||||||
% Let $V$ be an open neighbourhood of $y \in \overline{f}\left( U \right)$.
|
Let $V$ be an open neighbourhood of $Y$ in $\overline{f}\left( U) \right) $.
|
||||||
% Consider $f^{-1}(V)$.
|
Consider $f^{-1}(V)$.
|
||||||
% Then
|
Consider the basic open set
|
||||||
% \[
|
\[
|
||||||
% \{\cF \in \beta\N : \cF \ni f^{-1}(V)\}
|
\{\cF \in \beta\N : \cF \ni f^{-1}(V)\}.
|
||||||
% \]
|
\]
|
||||||
% is a basic open set.
|
|
||||||
|
|
||||||
\todo{I missed the last 5 minutes}
|
\todo{I missed the last 5 minutes}
|
||||||
|
|
Loading…
Reference in a new issue