Compare commits
2 commits
c9212aefdd
...
6c2a76d838
Author | SHA1 | Date | |
---|---|---|---|
6c2a76d838 | |||
f4d64527c4 |
12 changed files with 126 additions and 74 deletions
|
@ -185,11 +185,11 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
||||||
\begin{definition}[Our favourite Polish spaces]
|
\begin{definition}[Our favourite Polish spaces]
|
||||||
\leavevmode
|
\leavevmode
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $2^{\omega}$ is called the \vocab{Cantor set}.
|
\item $2^{\N}$ is called the \vocab{Cantor set}.
|
||||||
(Consider $2$ with the discrete topology)
|
(Consider $2$ with the discrete topology)
|
||||||
\item $\omega^{\omega}$ is called the \vocab{Baire space}.
|
\item $\cN \coloneqq \N^{\N}$ is called the \vocab{Baire space}.
|
||||||
($\omega$ with descrete topology)
|
($\N$ with descrete topology)
|
||||||
\item $[0,1]^{\omega}$ is called the \vocab{Hilbert cube}.
|
\item $\mathbb{H} \coloneqq [0,1]^{\N}$ is called the \vocab{Hilbert cube}.
|
||||||
($[0,1] \subseteq \R$ with the usual topology)
|
($[0,1] \subseteq \R$ with the usual topology)
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
|
@ -78,18 +78,17 @@ where $X$ is a metrizable, usually second countable space.
|
||||||
we also have
|
we also have
|
||||||
$A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$.
|
$A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$.
|
||||||
|
|
||||||
We construct a $(2^\omega)^\omega \cong 2^\omega$-universal set
|
We construct a $(2^{\omega \times \omega}) \cong 2^\omega$-universal set
|
||||||
for $\Sigma^0_\xi(X)$.
|
for $\Sigma^0_\xi(X)$.
|
||||||
For $(y_n) \in (2^\omega)^\omega$
|
For $(y_{m,n}) \in (2^{\omega \times \omega})$
|
||||||
and $x \in X$
|
and $x \in X$
|
||||||
we set $((y_n), x) \in \cU$
|
we set $((y_{m,n}), x) \in \cU$
|
||||||
iff $\exists n.~(y_n, x) \in U_{\xi_n}$,
|
iff $\exists n.~((y_{m,n})_{m < \omega}, x) \in U_{\xi_n}$,
|
||||||
i.e.~iff $\exists n.~x \in (U_{\xi_n})_{y_n}$.
|
i.e.~iff $\exists n.~x \in (U_{\xi_n})_{(y_{m,n})_{m < \omega}}$.
|
||||||
|
|
||||||
Let $A \in \Sigma^0_\xi(X)$.
|
Let $A \in \Sigma^0_\xi(X)$.
|
||||||
Then $A = \bigcup_{n} B_n$ for some $B_n \in \Pi^0_{\xi_n}(X)$.
|
Then $A = \bigcup_{n} B_n$ for some $B_n \in \Pi^0_{\xi_n}(X)$.
|
||||||
% TODO
|
Furthermore $\cU \in \Sigma^0_{\xi}((2^{\omega \times \omega} \times X)$.
|
||||||
Furthermore $\cU \in \Sigma^0_{\xi}((2^\omega)^\omega \times X)$.
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
Since $2^{\omega}$ embeds
|
Since $2^{\omega}$ embeds
|
||||||
|
|
|
@ -154,7 +154,7 @@ We will see later that $\Sigma^1_1(X) \cap \Pi^1_1(X) = \cB(X)$.
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Take $\cU \subseteq Y \times X \times \cN$
|
Take $\cU \subseteq Y \times X \times \cN$
|
||||||
which is $Y$-universal for $\Pi^0_1(X \times \cN)$.
|
which is $Y$-universal for $\Pi^0_1(X \times \cN)$.
|
||||||
Let $\cV \coloneqq \proj_{Y \times Y}(\cU)$.
|
Let $\cV \coloneqq \proj_{Y \times X}(\cU)$.
|
||||||
Then $\cV$ is $Y$-universal for $\Sigma^1_1(X)$:
|
Then $\cV$ is $Y$-universal for $\Sigma^1_1(X)$:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $\cV \in \Sigma^1_1(Y \times X)$
|
\item $\cV \in \Sigma^1_1(Y \times X)$
|
||||||
|
|
|
@ -34,7 +34,8 @@ we need the following definition:
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
\label{lem:lusinsephelp}
|
\label{lem:lusinsephelp}
|
||||||
If $P = \bigcup_{m < \omega} P_m$, $Q = \bigcup_{n < \omega} Q_n$ are such that
|
If $P = \bigcup_{m < \omega} P_m$, $Q = \bigcup_{n < \omega} Q_n$ are such that
|
||||||
for any $m, n$ the sets $P_m$ and $Q_n$ are Borel separable.
|
for any $m, n$ the sets $P_m$ and $Q_n$ are Borel separable,
|
||||||
|
then $P$ and $Q$ are Borel separable.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
For all $m, n$ pick $R_{m,n}$ Borel,
|
For all $m, n$ pick $R_{m,n}$ Borel,
|
||||||
|
@ -42,7 +43,7 @@ we need the following definition:
|
||||||
and $Q_n \cap R_{m,n} = \emptyset$.
|
and $Q_n \cap R_{m,n} = \emptyset$.
|
||||||
Then $R = \bigcup_m \bigcap_n R_{m,n}$
|
Then $R = \bigcup_m \bigcap_n R_{m,n}$
|
||||||
has the desired property
|
has the desired property
|
||||||
that $R \subseteq R$ and $R \cap Q = \emptyset$.
|
that $P \subseteq R$ and $R \cap Q = \emptyset$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{notation}
|
\begin{notation}
|
||||||
|
@ -60,7 +61,7 @@ we need the following definition:
|
||||||
|
|
||||||
Write $A_s \coloneqq f(\cN_s)$ and $B_s \coloneqq g(\cN_s)$.
|
Write $A_s \coloneqq f(\cN_s)$ and $B_s \coloneqq g(\cN_s)$.
|
||||||
Note that $A_s = \bigcup_m A_{s\concat m}$
|
Note that $A_s = \bigcup_m A_{s\concat m}$
|
||||||
and $B_ns = \bigcup_{n < \omega} B_{s\concat n}$.
|
and $B_s = \bigcup_{n < \omega} B_{s\concat n}$.
|
||||||
|
|
||||||
In particular
|
In particular
|
||||||
$A = \bigcup_{m < \omega} A_{\underbrace{\langle m \rangle}_{\in \omega^1}}$
|
$A = \bigcup_{m < \omega} A_{\underbrace{\langle m \rangle}_{\in \omega^1}}$
|
||||||
|
|
|
@ -183,7 +183,7 @@ i.e.}{}
|
||||||
Let $X$ be Polish and $C \subseteq X$ coanalytic.
|
Let $X$ be Polish and $C \subseteq X$ coanalytic.
|
||||||
Then $\phi\colon C \to \Ord$
|
Then $\phi\colon C \to \Ord$
|
||||||
is a \vocab[Rank!$\Pi^1_1$-rank]{$\Pi^1_1$-rank}
|
is a \vocab[Rank!$\Pi^1_1$-rank]{$\Pi^1_1$-rank}
|
||||||
provided that $\le^\ast$ and $<^\ast$ are coanalytic subsets of $X \times X$,
|
provided that $\le^\ast_\phi$ and $<^\ast_\phi$ are coanalytic subsets of $X \times X$,
|
||||||
where
|
where
|
||||||
$x \le^\ast_{\phi} y$
|
$x \le^\ast_{\phi} y$
|
||||||
iff
|
iff
|
||||||
|
|
|
@ -55,7 +55,7 @@
|
||||||
then $\xi = \alpha$
|
then $\xi = \alpha$
|
||||||
and
|
and
|
||||||
\[
|
\[
|
||||||
E_\xi = E_\alpha = \bigcup_{\eta < \alpha}
|
E_\xi = E_\alpha = \bigcup_{\eta < \alpha} E_\eta
|
||||||
\]
|
\]
|
||||||
is a countable union of Borel sets by the previous case.
|
is a countable union of Borel sets by the previous case.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
|
@ -140,7 +140,7 @@ By Zorn's lemma, this will follow from
|
||||||
\begin{theorem}[Furstenberg]
|
\begin{theorem}[Furstenberg]
|
||||||
\label{thm:l16:3}
|
\label{thm:l16:3}
|
||||||
Let $(X, T)$ be a minimal distal flow
|
Let $(X, T)$ be a minimal distal flow
|
||||||
and let $(Y, T)$ be a proper factor.
|
and let $(Y, T)$ be a proper factor.%
|
||||||
\footnote{i.e.~$(X,T)$ and $(Y,T)$ are not isomorphic}
|
\footnote{i.e.~$(X,T)$ and $(Y,T)$ are not isomorphic}
|
||||||
Then there is another factor $(Z,T)$ of $(X,T)$
|
Then there is another factor $(Z,T)$ of $(X,T)$
|
||||||
which is a proper isometric extension of $Y$.
|
which is a proper isometric extension of $Y$.
|
||||||
|
|
|
@ -15,7 +15,7 @@ U_{\epsilon}(x,y) \coloneqq \{f \in X^X : d(x,f(y)) < \epsilon\}.
|
||||||
\]
|
\]
|
||||||
for all $x,y \in X$, $\epsilon > 0$.
|
for all $x,y \in X$, $\epsilon > 0$.
|
||||||
|
|
||||||
$X^{X}$ is a compact Hausdorff space.
|
$X^{X}$ is a compact Hausdorff space.\footnote{cf.~\href{https://en.wikipedia.org/wiki/Tychonoff's_theorem}{Tychonoff's theorem}}
|
||||||
\begin{remark}%
|
\begin{remark}%
|
||||||
\footnote{cf.~\yaref{s11e1}}
|
\footnote{cf.~\yaref{s11e1}}
|
||||||
Let $f_0 \in X^X$ be fixed.
|
Let $f_0 \in X^X$ be fixed.
|
||||||
|
@ -34,16 +34,20 @@ $X^{X}$ is a compact Hausdorff space.
|
||||||
\end{remark}
|
\end{remark}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
Let $(X,T)$ be a flow.
|
\gist{%
|
||||||
Then the \vocab{Ellis semigroup}
|
Let $(X,T)$ be a flow.
|
||||||
is defined by
|
Then the \vocab{Ellis semigroup}
|
||||||
$E(X,T) \coloneqq \overline{T} \subseteq X^X$,
|
is defined by
|
||||||
i.e.~identify $t \in T$ with $x \mapsto tx$
|
$E(X,T) \coloneqq \overline{T} \subseteq X^X$,
|
||||||
and take the closure in $X^X$.
|
i.e.~identify $t \in T$ with $x \mapsto tx$
|
||||||
|
and take the closure in $X^X$.
|
||||||
|
}{%
|
||||||
|
The \vocab{Ellis semigroup} of a flow $(X,T)$
|
||||||
|
is $E(X,T) \coloneqq \overline{T} \subseteq X^X$.
|
||||||
|
}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
$E(X,T)$ is compact and Hausdorff,
|
$E(X,T)$ is compact and Hausdorff,
|
||||||
since $X^X$ has these properties.
|
since $X^X$ has these properties.
|
||||||
% TODO THINK ABOUT THIS
|
|
||||||
|
|
||||||
\gist{
|
\gist{
|
||||||
Properties of $(X,T)$ translate to properties of $E(X,T)$:
|
Properties of $(X,T)$ translate to properties of $E(X,T)$:
|
||||||
|
@ -58,15 +62,14 @@ since $X^X$ has these properties.
|
||||||
i.e.~closed under composition.
|
i.e.~closed under composition.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
\gist{
|
||||||
Let $G \coloneqq E(X,T)$.
|
Let $G \coloneqq E(X,T)$.
|
||||||
Take $t \in T$. We want to show that $tG \subseteq G$,
|
Take $t \in T$. We want to show that $tG \subseteq G$,
|
||||||
i.e.~for all $h \in G$ we have $th \in G$.
|
i.e.~for all $h \in G$ we have $th \in G$.
|
||||||
|
|
||||||
\gist{
|
|
||||||
We have that $t^{-1}G$ is compact,
|
We have that $t^{-1}G$ is compact,
|
||||||
since $t^{-1}$ is continuous
|
since $t^{-1}$ is continuous
|
||||||
and $G$ is compact.
|
and $G$ is compact.
|
||||||
}{$t^{-1}G$ is compact.}
|
|
||||||
|
|
||||||
It is $T \subseteq t^{-1}G$ since $T \ni s = t^{-1}\underbrace{(ts)}_{\in G}$.
|
It is $T \subseteq t^{-1}G$ since $T \ni s = t^{-1}\underbrace{(ts)}_{\in G}$.
|
||||||
|
|
||||||
|
@ -93,6 +96,21 @@ since $X^X$ has these properties.
|
||||||
Since $G$ compact,
|
Since $G$ compact,
|
||||||
and $Tg \subseteq G$,
|
and $Tg \subseteq G$,
|
||||||
we have $ \overline{Tg} \subseteq G$.
|
we have $ \overline{Tg} \subseteq G$.
|
||||||
|
}{
|
||||||
|
$G \coloneqq E(X,T)$.
|
||||||
|
\begin{itemize}
|
||||||
|
\item $\forall t \in T. ~ tG \subseteq G$:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $t^{-1}G$ is compact.
|
||||||
|
\item $T \subseteq t^{-1}G$,
|
||||||
|
\item $\leadsto G = \overline{T} \subseteq t^{-1}G$,
|
||||||
|
i.e.~$tG \subseteq G$.
|
||||||
|
\end{itemize}
|
||||||
|
\item $\forall g \in G.~\overline{T}g = \overline{Tg}$ (cts.~map from compact to Hausdorff)
|
||||||
|
\item $\forall g \in G.~Gg \subseteq G$ :
|
||||||
|
$Gg = \overline{T}g = \overline{Tg} \overset{G \text{ compact}, Tg \subseteq G}{\subseteq} G$.
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
@ -101,9 +119,11 @@ since $X^X$ has these properties.
|
||||||
with a compact Hausdorff topology,
|
with a compact Hausdorff topology,
|
||||||
such that $S \ni x \mapsto xs$ is continuous for all $s$.
|
such that $S \ni x \mapsto xs$ is continuous for all $s$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
\gist{
|
||||||
\begin{example}
|
\begin{example}
|
||||||
The Ellis semigroup is a compact semigroup.
|
The Ellis semigroup is a compact semigroup.
|
||||||
\end{example}
|
\end{example}
|
||||||
|
}{}
|
||||||
|
|
||||||
\begin{lemma}[Ellis–Numakura]
|
\begin{lemma}[Ellis–Numakura]
|
||||||
\yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura}
|
\yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura}
|
||||||
|
@ -112,6 +132,7 @@ since $X^X$ has these properties.
|
||||||
i.e.~$f$ such that $f^2 = f$.
|
i.e.~$f$ such that $f^2 = f$.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
\gist{
|
||||||
Using Zorn's lemma, take a $\subseteq$-minimal
|
Using Zorn's lemma, take a $\subseteq$-minimal
|
||||||
compact subsemigroup $R$ of $S$
|
compact subsemigroup $R$ of $S$
|
||||||
and let $s \in R$.
|
and let $s \in R$.
|
||||||
|
@ -128,25 +149,39 @@ since $X^X$ has these properties.
|
||||||
Thus $P = R$ by minimality,
|
Thus $P = R$ by minimality,
|
||||||
so $s \in P$,
|
so $s \in P$,
|
||||||
i.e.~$s^2 = s$.
|
i.e.~$s^2 = s$.
|
||||||
|
}{
|
||||||
|
\begin{itemize}
|
||||||
|
\item Take $R \subseteq S$ minimal compact subsemigroup (Zorn),
|
||||||
|
$s \in R$.
|
||||||
|
\item $Rs \subseteq R \implies Rs = R$.
|
||||||
|
\item $P \coloneqq \{x \in R : xs = s\}$:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $P \neq \emptyset$, since $s \in Rs$
|
||||||
|
\item $P$ compact, since $P = \alpha^{-1}(s) \cap R$,
|
||||||
|
$\alpha: x \mapsto xs$ cts.
|
||||||
|
\item $P = R \implies s^2 = s$.
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}%
|
||||||
|
}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
The \yaref{lem:ellisnumakura} is not very interesting for $E(X,T)$,
|
\gist{
|
||||||
since we already know that it has an identity.
|
The \yaref{lem:ellisnumakura} is not very interesting for $E(X,T)$,
|
||||||
%in fact we might have chosen $R = \{1\}$ in the proof.
|
since we already know that it has an identity.
|
||||||
But it is interesting for other semigroups.
|
%in fact we might have chosen $R = \{1\}$ in the proof.
|
||||||
|
But it is interesting for other semigroups.
|
||||||
|
}{}
|
||||||
|
|
||||||
|
|
||||||
\begin{theorem}[Ellis]
|
\begin{theorem}[Ellis]
|
||||||
$(X,T)$ is distal iff $E(X,T)$ is a group.
|
$(X,T)$ is distal iff $E(X,T)$ is a group.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
Let $G \coloneqq E(X,T)$ and let $d$ be a metric on $X$.
|
||||||
Let $G \coloneqq E(X,T)$.
|
\gist{
|
||||||
Let $d$ be a metric on $X$.
|
|
||||||
|
|
||||||
For all $g \in G$ we need to show that $x \mapsto gx$ is bijective.
|
For all $g \in G$ we need to show that $x \mapsto gx$ is bijective.
|
||||||
If we had $gx = gy$, then $d(gx,gy) = 0$.
|
If we had $gx = gy$, then $d(gx,gy) = 0$.
|
||||||
Then $\inf d(tx,ty) = 0$, but the flow is distal,
|
Then $\inf_{t \in T} d(tx,ty) = 0$, but the flow is distal,
|
||||||
hence $x = y$.
|
hence $x = y$.
|
||||||
|
|
||||||
Let $g \in G$. Consider the compact semigroup $\Gamma \coloneqq Gg$.
|
Let $g \in G$. Consider the compact semigroup $\Gamma \coloneqq Gg$.
|
||||||
|
@ -164,19 +199,39 @@ But it is interesting for other semigroups.
|
||||||
Hence $g'$ is bijective
|
Hence $g'$ is bijective
|
||||||
and $x = gg'(x)$,
|
and $x = gg'(x)$,
|
||||||
i.e.~$g g' = \id$.
|
i.e.~$g g' = \id$.
|
||||||
|
}{
|
||||||
|
\begin{itemize}
|
||||||
|
\item $x \mapsto gx$ injective for all $g \in G$:
|
||||||
|
\[gx = gy
|
||||||
|
\implies d(gx,gy) = 0
|
||||||
|
\implies \inf_{t \in T} d(tx, ty) = 0
|
||||||
|
\overset{\text{distal}}{\implies} x = y.
|
||||||
|
\]
|
||||||
|
\item Fix $g \in G$.
|
||||||
|
\begin{itemize}
|
||||||
|
\item $\Gamma \coloneqq Gg$ is a compact semigroup.
|
||||||
|
\item $\exists f\in \Gamma.~f^2 = f$ (\yaref{lem:ellisnumakura})
|
||||||
|
\item $f$ is injective, hence $f = \id$.
|
||||||
|
\item Take $g'$ such that $g'g = f$. $g'gg' = g' \implies gg' = \id$.
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
|
||||||
\todo{The other direction is left as an easy exercise.}
|
\gist{
|
||||||
|
On the other hand if $(x_0,x_1)$ is proximal,
|
||||||
|
then there exists $g \in G$ such that $gx_0 = gx_1$.%
|
||||||
|
\footnote{cf.~\yaref{s11e1} (e)}
|
||||||
|
It follows that an inverse to $g$ can not exist.
|
||||||
|
}{If $(x_0,x_1)$ is proximal, there is $g \in G$ with $gx_0 = gx_1$, i.e.~no inverse to $g$.}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
% TODO ANKI-MARKER
|
% Let $(X,T)$ be a flow.
|
||||||
|
% Then by Zorn's lemma, there exists $X_0 \subseteq X$
|
||||||
Let $(X,T)$ be a flow.
|
% such that $(X_0, T)$ is minimal.
|
||||||
Then by Zorn's lemma, there exists $X_0 \subseteq X$
|
% In particular,
|
||||||
such that $(X_0, T)$ is minimal.
|
% for $x \in X$ and $\overline{Tx} = Y$
|
||||||
In particular,
|
% we have that $(Y,T)$ is a flow.
|
||||||
for $x \in X$ and $\overline{Tx} = Y$
|
% However if we pick $y \in Y$, $Ty$ might not be dense.
|
||||||
we have that $(Y,T)$ is a flow.
|
|
||||||
However if we pick $y \in Y$, $Ty$ might not be dense.
|
|
||||||
% TODO: question!
|
% TODO: question!
|
||||||
% TODO: think about this!
|
% TODO: think about this!
|
||||||
% We want to a minimal subflow in a nice way:
|
% We want to a minimal subflow in a nice way:
|
||||||
|
@ -189,6 +244,7 @@ However if we pick $y \in Y$, $Ty$ might not be dense.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Let $G = E(X,T)$.
|
Let $G = E(X,T)$.
|
||||||
|
\gist{
|
||||||
Note that for all $x \in X$,
|
Note that for all $x \in X$,
|
||||||
we have that $Gx \subseteq X$ is compact
|
we have that $Gx \subseteq X$ is compact
|
||||||
and invariant under the action of $G$.
|
and invariant under the action of $G$.
|
||||||
|
@ -196,17 +252,18 @@ However if we pick $y \in Y$, $Ty$ might not be dense.
|
||||||
Since $G$ is a group, the orbits partition $X$.%
|
Since $G$ is a group, the orbits partition $X$.%
|
||||||
\footnote{Note that in general this does not hold for semigroups.}
|
\footnote{Note that in general this does not hold for semigroups.}
|
||||||
|
|
||||||
% Clearly the sets $Gx$ cover $X$. We want to show that they
|
We need to show that $(Gx, T)$ is minimal.
|
||||||
% partition $X$.
|
Suppose that $y \in Gx$, i.e.~$Gx = Gy$.
|
||||||
% It suffices to show that $y \in Gx \implies Gy = Gx$.
|
Since $g \mapsto gy$ is continuous,
|
||||||
|
we have $Gx = Gy = \overline{T}y = \overline{Ty}$,
|
||||||
% Take some $y \in Gx$.
|
so $Ty$ is dense in $Gx$.
|
||||||
% Recall that $\overline{Ty} = \overline{T} y = Gy$.
|
}{
|
||||||
% We have $\overline{Ty} \subseteq Gx$,
|
\begin{itemize}
|
||||||
% so $Gy \subseteq Gx$.
|
\item $G$ is a group, so the $G$-orbits partition $X$.
|
||||||
% Since $y = g_0 x \implies x = g_0^{-1}y$, we also have $x \in Gy$,
|
\item Let $y \in Gx$, then $Gx \overset{y \in Gx}{=} Gy \overset{\text{def}}{=} \overline{T}y \overset{g \mapsto gy \text{ cts.}}{=} \overline{Ty}$,
|
||||||
% hence $Gx \subseteq Gy$
|
i.e.~$(Gx,T)$ is minimal.
|
||||||
% TODO: WHY?
|
\end{itemize}
|
||||||
|
}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{corollary}
|
\begin{corollary}
|
||||||
If $(X,T)$ is distal and minimal,
|
If $(X,T)$ is distal and minimal,
|
||||||
|
|
|
@ -1,16 +1,11 @@
|
||||||
\subsection{Sketch of proof of \yaref{thm:l16:3}}
|
\subsection{Sketch of proof of \yaref{thm:l16:3}}
|
||||||
\lecture{18}{2023-12-15}{Sketch of proof of \yaref{thm:l16:3}}
|
\lecture{18}{2023-12-15}{Sketch of proof of \yaref{thm:l16:3}}
|
||||||
|
|
||||||
|
% TODO ANKI-MARKER
|
||||||
|
|
||||||
|
|
||||||
The goal for this lecture is to give a very rough
|
The goal for this lecture is to give a very rough
|
||||||
sketch of \yaref{thm:l16:3} in the case of $|Z| = 1$.
|
sketch of \yaref{thm:l16:3} in the case of $|Z| = 1$.
|
||||||
% \begin{theorem}[Furstenberg]
|
|
||||||
% Let $(X, T)$ be a minimal distal flow
|
|
||||||
% and let $(Z,T)$ be a proper factor of $X$%
|
|
||||||
% \footnote{i.e.~$(X,T)$ and $(Z,T)$ are not isomorphic.}
|
|
||||||
% Then three is another factor $(Y,T)$ of $(X,T)$
|
|
||||||
% which is a proper isometric extension of $Z$.
|
|
||||||
% \end{theorem}
|
|
||||||
|
|
||||||
|
|
||||||
Let $(X,T)$ be a distal flow.
|
Let $(X,T)$ be a distal flow.
|
||||||
Then $G \coloneqq E(X,T)$ is a group.
|
Then $G \coloneqq E(X,T)$ is a group.
|
||||||
|
|
|
@ -78,7 +78,7 @@
|
||||||
is Borel for all $\alpha < \omega_1$.
|
is Borel for all $\alpha < \omega_1$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\todo{This was already stated as \yaref{thm:beleznayforeman} in lecture 16
|
\todo{This was already stated as \yaref{thm:beleznay-foreman} in lecture 16
|
||||||
and should not have two numbers.}
|
and should not have two numbers.}
|
||||||
|
|
||||||
A few words on the proof:
|
A few words on the proof:
|
||||||
|
|
|
@ -108,13 +108,13 @@ This requires the use of the axiom of choice.
|
||||||
\item Let $B = \{x \in \R | (F_i)_x \text{ is meager}\}$.
|
\item Let $B = \{x \in \R | (F_i)_x \text{ is meager}\}$.
|
||||||
Then $B$ is comeager in $\R$ and $|B| = \fc$.
|
Then $B$ is comeager in $\R$ and $|B| = \fc$.
|
||||||
|
|
||||||
We have $|B| = \fc$, since $B$ contains a comeager
|
We have $|B| = \fc$:
|
||||||
$G_\delta$ set, $B'$:
|
$B$ contains a comeager $G_\delta$ set, say $B'$.
|
||||||
$B'$ is Polish,
|
$B'$ is Polish,
|
||||||
hence $B' = P \cup C$
|
hence $B' = P \cup C$
|
||||||
for $P$ perfect and $C$ countable,
|
for $P$ perfect and $C$ countable,
|
||||||
and $|P| \in \{\fc, 0\}$.
|
and $|P| \in \{\fc, 0\}$.
|
||||||
But $B'$ can't contain isolated point.
|
But $B'$ can't contain an isolated point.
|
||||||
\item We use $B$ to find a suitable point $a_i$:
|
\item We use $B$ to find a suitable point $a_i$:
|
||||||
|
|
||||||
To ensure that (i) holds, it suffices to chose
|
To ensure that (i) holds, it suffices to chose
|
||||||
|
|
|
@ -102,7 +102,7 @@ Let $d$ be a compatible metric on $X$.
|
||||||
Consider $\ev_x \colon X^X \to X$.
|
Consider $\ev_x \colon X^X \to X$.
|
||||||
$X^X$ is compact and $X$ is Hausdorff.
|
$X^X$ is compact and $X$ is Hausdorff.
|
||||||
Hence we can apply
|
Hence we can apply
|
||||||
\label{fact:t12:2}.
|
\yaref{fact:t12:2}.
|
||||||
|
|
||||||
\item Let $x_0 \neq x_1 \in X$.
|
\item Let $x_0 \neq x_1 \in X$.
|
||||||
Then $(x_0,x_1)$ is a proximal pair iff $d(gx_0,gx_1) = 0$
|
Then $(x_0,x_1)$ is a proximal pair iff $d(gx_0,gx_1) = 0$
|
||||||
|
|
Loading…
Reference in a new issue