Compare commits
No commits in common. "99ca39e52c9eac1139b57be12b62a1167c301d4f" and "c3948b12ecf574187b53bdf681c1bc192f948401" have entirely different histories.
99ca39e52c
...
c3948b12ec
12 changed files with 17 additions and 603 deletions
|
@ -1,27 +0,0 @@
|
||||||
@misc{tao,
|
|
||||||
ISSN = {0003486X},
|
|
||||||
URL = {https://terrytao.wordpress.com/category/teaching/254a-ergodic-theory/},
|
|
||||||
author = {Terence Tao},
|
|
||||||
title = {254A Ergodic Theory},
|
|
||||||
urldate = {2024-01-01},
|
|
||||||
year = {2008},
|
|
||||||
}
|
|
||||||
@MISC{801106,
|
|
||||||
TITLE = {Closure of a topological group},
|
|
||||||
AUTHOR = {Mariano Suarez-Alvarez},
|
|
||||||
HOWPUBLISHED = {Mathematics Stack Exchange},
|
|
||||||
URL = {https://math.stackexchange.com/q/801106},
|
|
||||||
}
|
|
||||||
@article{Furstenberg,
|
|
||||||
author = {Furstenberg, H.},
|
|
||||||
journal = {American journal of mathematics},
|
|
||||||
issn = {0002-9327},
|
|
||||||
number = {3},
|
|
||||||
keywords = {Continuous functions ; Eigenfunctions ; Equivalence relation ; Geometry ; Integers ; Mathematical functions ; Mathematics ; Myelinated nerve fibers ; Structure (category theory) ; Topological compactness ; Topological spaces ; Topological theorems ; Topology},
|
|
||||||
language = {eng},
|
|
||||||
pages = {477-515},
|
|
||||||
publisher = {Johns Hopkins Press},
|
|
||||||
volume = {85},
|
|
||||||
year = {1963},
|
|
||||||
title = {The Structure of Distal Flows},
|
|
||||||
}
|
|
|
@ -1,6 +1,6 @@
|
||||||
\subsection{Topological Dynamics}
|
\subsection{Topological Dynamics}
|
||||||
|
|
||||||
\begin{fact}[\cite{801106}]
|
\begin{fact}[\url{https://math.stackexchange.com/a/801106}]
|
||||||
\label{fact:topsubgroupclosure}
|
\label{fact:topsubgroupclosure}
|
||||||
Let $H$ be a topological group
|
Let $H$ be a topological group
|
||||||
and $G \subseteq H$ a subgroup.
|
and $G \subseteq H$ a subgroup.
|
||||||
|
|
|
@ -161,7 +161,6 @@ Recall:
|
||||||
A flow is \vocab{distal} iff
|
A flow is \vocab{distal} iff
|
||||||
it has no proximal pair.
|
it has no proximal pair.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\begin{definition}+
|
\begin{definition}+
|
||||||
Let $(T,X)$ and $(T,Y)$ be flows.
|
Let $(T,X)$ and $(T,Y)$ be flows.
|
||||||
A \vocab{factor map} $\pi\colon (T,X) \to (T,Y)$
|
A \vocab{factor map} $\pi\colon (T,X) \to (T,Y)$
|
||||||
|
|
|
@ -135,10 +135,9 @@ $X$ is always compact metrizable.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
By Zorn's lemma, this will follow from
|
By Zorn's lemma, this will follow from
|
||||||
\begin{theorem}[Furstenberg]
|
\begin{theorem}[Furstenberg]
|
||||||
\label{thm:l16:3}
|
|
||||||
Let $(X, T)$ be a minimal distal flow
|
Let $(X, T)$ be a minimal distal flow
|
||||||
and let $(Y, T)$ be a proper factor.
|
and let $(Y, T)$ be a proper factor,
|
||||||
\footnote{i.e.~$(X,T)$ and $(Y,T)$ are not isomorphic}
|
i.e.~$(X,T)$ and $(Y,T)$ are note isomorphic.
|
||||||
Then there is another factor $(Z,T)$ of $(X,T)$
|
Then there is another factor $(Z,T)$ of $(X,T)$
|
||||||
which is a proper isometric extension of $Y$.
|
which is a proper isometric extension of $Y$.
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,8 @@
|
||||||
\subsection{The Ellis semigroup}
|
|
||||||
\lecture{17}{2023-12-12}{The Ellis semigroup}
|
\lecture{17}{2023-12-12}{The Ellis semigroup}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{The Ellis semigroup}
|
||||||
|
|
||||||
Let $(X, d)$ be a compact metric space
|
Let $(X, d)$ be a compact metric space
|
||||||
and $(X, T)$ a flow.
|
and $(X, T)$ a flow.
|
||||||
|
|
||||||
|
@ -27,7 +29,7 @@ $X^{X}$ is a compact Hausdorff space.
|
||||||
We have $ff_0 \in U_{\epsilon}(x,y)$
|
We have $ff_0 \in U_{\epsilon}(x,y)$
|
||||||
iff $f \in U_\epsilon(x,f_0(y))$.
|
iff $f \in U_\epsilon(x,f_0(y))$.
|
||||||
\item Fix $x_0 \in X$.
|
\item Fix $x_0 \in X$.
|
||||||
Then $f \mapsto f(x_0)$ is continuous.
|
Then $f \mapsto f(x)$ is continuous.
|
||||||
\item In general $f \mapsto f_0 \circ f$ is not continuous,
|
\item In general $f \mapsto f_0 \circ f$ is not continuous,
|
||||||
but if $f_0$ is continuous, then the map is continuous.
|
but if $f_0$ is continuous, then the map is continuous.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
@ -38,24 +40,23 @@ Let $(X,T)$ be a flow.
|
||||||
Then the \vocab{Ellis semigroup}
|
Then the \vocab{Ellis semigroup}
|
||||||
is defined by
|
is defined by
|
||||||
$E(X,T) \coloneqq \overline{T} \subseteq X^X$,
|
$E(X,T) \coloneqq \overline{T} \subseteq X^X$,
|
||||||
i.e.~identify $t \in T$ with $x \mapsto tx$
|
i.e.~identify $T$ with $x \mapsto tx$
|
||||||
and take the closure in $X^X$.
|
and take the closure in $X^X$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
$E(X,T)$ is compact and Hausdorff,
|
$E(X,T)$ is compact and Hausdorff,
|
||||||
since $X^X$ has these properties.
|
since $X^X$ has these properties.
|
||||||
|
|
||||||
Properties of $(X,T)$ translate to properties of $E(X,T)$:
|
Properties of $(X,T)$ translate to
|
||||||
\begin{goal}
|
\begin{goal}
|
||||||
We want to show that if $(X,T)$ is distal,
|
We want to show that if $(X,T)$ is distal,
|
||||||
then $E(X,T)$ is a group.
|
then $E(X,T)$ is a group.
|
||||||
\end{goal}
|
\end{goal}
|
||||||
|
|
||||||
\begin{proposition}
|
\begin{proposition}
|
||||||
$E(X,T)$ is a semigroup,
|
$G$ is a semigroup,
|
||||||
i.e.~closed under composition.
|
i.e.~closed under composition.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Let $G \coloneqq E(X,T)$.
|
|
||||||
Take $t \in T$. We want to show that $tG \subseteq G$,
|
Take $t \in T$. We want to show that $tG \subseteq G$,
|
||||||
i.e.~for all $h \in G$ we have $th \in G$.
|
i.e.~for all $h \in G$ we have $th \in G$.
|
||||||
|
|
||||||
|
@ -96,7 +97,7 @@ Properties of $(X,T)$ translate to properties of $E(X,T)$:
|
||||||
such that $S \ni x \mapsto xs$ is continuous for all $s$.
|
such that $S \ni x \mapsto xs$ is continuous for all $s$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
\begin{example}
|
\begin{example}
|
||||||
The Ellis semigroup is a compact semigroup.
|
Ellis semigroup is a compact semigroup.
|
||||||
\end{example}
|
\end{example}
|
||||||
|
|
||||||
\begin{lemma}[Ellis–Numakura]
|
\begin{lemma}[Ellis–Numakura]
|
||||||
|
@ -180,10 +181,10 @@ However if we pick $y \in Y$, $Ty$ might not be dense.
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Let $G = E(X,T)$.
|
Let $G = E(X,T)$.
|
||||||
Note that for all $x \in X$,
|
Note that for all $x \in X$,
|
||||||
we have that $Gx \subseteq X$ is compact
|
we have $Gx \subseteq X$ is compact
|
||||||
and invariant under the action of $G$.
|
and invariant under the action of $G$.
|
||||||
|
|
||||||
Since $G$ is a group, the orbits partition $X$.%
|
Since $G$ is a group, we have that the orbits partition $X$.%
|
||||||
\footnote{Note that in general this does not hold for semigroups.}
|
\footnote{Note that in general this does not hold for semigroups.}
|
||||||
|
|
||||||
% Clearly the sets $Gx$ cover $X$. We want to show that they
|
% Clearly the sets $Gx$ cover $X$. We want to show that they
|
||||||
|
|
|
@ -1,236 +0,0 @@
|
||||||
\subsection{Sketch of proof of \yaref{thm:l16:3}}
|
|
||||||
\lecture{18}{2023-12-15}{Sketch of proof of \yaref{thm:l16:3}}
|
|
||||||
|
|
||||||
The goal for this lecture is to give a very rough
|
|
||||||
sketch of \yaref{thm:l16:3} in the case of $|Z| = 1$.
|
|
||||||
% \begin{theorem}[Furstenberg]
|
|
||||||
% Let $(X, T)$ be a minimal distal flow
|
|
||||||
% and let $(Z,T)$ be a proper factor of $X$%
|
|
||||||
% \footnote{i.e.~$(X,T)$ and $(Z,T)$ are not isomorphic.}
|
|
||||||
% Then three is another factor $(Y,T)$ of $(X,T)$
|
|
||||||
% which is a proper isometric extension of $Z$.
|
|
||||||
% \end{theorem}
|
|
||||||
|
|
||||||
|
|
||||||
Let $(X,T)$ be a distal flow.
|
|
||||||
Then $G \coloneqq E(X,T)$ is a group.
|
|
||||||
\begin{definition}
|
|
||||||
For $x, x' \in X$ define
|
|
||||||
\[
|
|
||||||
F(x,x') \coloneqq \inf \{d(gx, gx') : g \in G\}.
|
|
||||||
\]
|
|
||||||
\end{definition}
|
|
||||||
\begin{fact}
|
|
||||||
\begin{enumerate}[(a)]
|
|
||||||
\item $F(x,x') = F(x', x)$,
|
|
||||||
\item $F(x,x') \ge 0$ and $F(x,x') = 0$ iff $x = x'$.
|
|
||||||
\item $F(gx, gx') = F(x,x')$ since $G$ is a group.
|
|
||||||
\item $F$ is an upper semi-continuous function on $X^2$,
|
|
||||||
i.e.~$\forall a \in R.~\{(x,x') \in X^2 : F(x,x') < a\} \overset{\text{open}}{\subseteq} X^2$.
|
|
||||||
|
|
||||||
This holds because $F$ is the infimum of continuous functions
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
f_g\colon X^2 &\longrightarrow & \R \\
|
|
||||||
(x,x') &\longmapsto & d(gx, gx')
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
for $g \in G$.
|
|
||||||
\end{enumerate}
|
|
||||||
\end{fact}
|
|
||||||
\begin{theoremdef}
|
|
||||||
\label{def:ftop}
|
|
||||||
The sets
|
|
||||||
\[
|
|
||||||
U_a(x) \coloneqq \{x' : F(x,x') < a\}
|
|
||||||
\]
|
|
||||||
form the basis of a topology in $X$.
|
|
||||||
This topology is called the \vocab{F-topology} on $X$.
|
|
||||||
In this setting, the original topology
|
|
||||||
is also called the \vocab{E-topology}.
|
|
||||||
\end{theoremdef}
|
|
||||||
This will follow from the following lemma:
|
|
||||||
\begin{lemma}
|
|
||||||
\label{lem:ftophelper}
|
|
||||||
Let $F(x,x') < a$.
|
|
||||||
Then there exists $\epsilon > 0$ such that
|
|
||||||
whenever $F(x',x'') < \epsilon$, then $F(x,x'') < a$.
|
|
||||||
\end{lemma}
|
|
||||||
\begin{refproof}{def:ftop}
|
|
||||||
We have to show that if $U_a(x_1) \cap U_b(x_2) \neq \emptyset$,
|
|
||||||
then this intersection is the union
|
|
||||||
of sets of this kind.
|
|
||||||
Let $x' \in U_a(x_1)$.
|
|
||||||
Then by \yaref{lem:ftophelper},
|
|
||||||
there exists $\epsilon_1 > 0$ with $U_{\epsilon_1}(x') \subseteq U_a(x_1)$.
|
|
||||||
Similarly there exists $\epsilon_2 > 0$
|
|
||||||
such that $U_{\epsilon_2}(x') \subseteq U_b(x_2)$.
|
|
||||||
So for $\epsilon \le \epsilon_1, \epsilon_2$,
|
|
||||||
we get $U_{\epsilon}(x') \subseteq U_a(x_1) \cap U_b(x_2)$.
|
|
||||||
\end{refproof}
|
|
||||||
\begin{refproof}{lem:ftophelper}%
|
|
||||||
\footnote{This was not covered in class.}
|
|
||||||
|
|
||||||
Let $T = \bigcup_n T_n$,% TODO Why does this exist?
|
|
||||||
$T_n$ compact, wlog.~$T_n \subseteq T_{n+1}$, and
|
|
||||||
let $G(x,x') \coloneqq \{(gx,gx') : g \in G\} \subseteq X \times X$.
|
|
||||||
Take $b$ such that $F(x,x') < b < a$.
|
|
||||||
Then $U = \{(u,u') \in G(x,x') : d(u,u') < b\}$
|
|
||||||
is open in $G(x,x')$
|
|
||||||
and since $F(x,x') < b$ we have $U \neq \emptyset$.
|
|
||||||
\begin{claim}
|
|
||||||
There exists $n$ such that
|
|
||||||
\[
|
|
||||||
\forall (u,u') \in G(x,x').~T_n(u,u')\cap U \neq \emptyset.
|
|
||||||
\]
|
|
||||||
\end{claim}
|
|
||||||
\begin{subproof}
|
|
||||||
Suppose not.
|
|
||||||
Then for all $n$, there is $(u_n, u_n') \in G(x,x')$
|
|
||||||
with
|
|
||||||
\[T_n(u_n, u_n') \subseteq G(x,x') \setminus U.\]
|
|
||||||
Note that the RHS is closed.
|
|
||||||
For $m > n$ we have
|
|
||||||
$T_n(u_m, u'_m) \subseteq G(x,x') \setminus U$
|
|
||||||
since $T_n \subseteq T_m$.
|
|
||||||
By compactness of $X$,
|
|
||||||
there exists $v,v'$ and some subsequence
|
|
||||||
such that $(u_{n_k}, u'_{n_k}) \to (v,v')$.
|
|
||||||
|
|
||||||
So for all $n$ we have $T_n(v,v') \subseteq G(x,x') \setminus U$,
|
|
||||||
hence $T(v,v') \cap U = \emptyset$,
|
|
||||||
so $G(v,v') \cap U = \emptyset$.
|
|
||||||
But this is a contradiction as $\emptyset\neq U \subseteq G(v,v')$.
|
|
||||||
\end{subproof}
|
|
||||||
The map
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
T\times X&\longrightarrow & X \\
|
|
||||||
(t,x) &\longmapsto & tx
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
is continuous.
|
|
||||||
Since $T_n$ is compact,
|
|
||||||
we have that $\{(x,t) \mapsto tx : t \in T_n\}$
|
|
||||||
is equicontinuous for all $n$.
|
|
||||||
So there is $\epsilon > 0$ such that
|
|
||||||
$d(x_1,x_2) < \epsilon \implies d(tx_1, tx_2) < a -b$
|
|
||||||
for all $t \in T_n$.
|
|
||||||
|
|
||||||
Suppose now that $F(x', x'') < \epsilon$.
|
|
||||||
Then there is $t_0 \in T$ such that $d(t_0x', t_0x'') < \epsilon$,
|
|
||||||
hence $d(t t_0x', t t_0 x'') < a-b$ for all $t \in T_n$.
|
|
||||||
Since $(t_0x, t_0x') \in G(x,x')$,
|
|
||||||
there is $t_1 \in T_n$
|
|
||||||
with $(t_1t_0x, t_1t_0x') \in U$,
|
|
||||||
i.e.~$d(t_1t_0x, t_1t_0x') < b$
|
|
||||||
and therefore
|
|
||||||
$F(x,x'') = d(t_1t_0x, t_1t_0x'') < a$.
|
|
||||||
\end{refproof}
|
|
||||||
|
|
||||||
Now assume $Z = \{\star\}$.
|
|
||||||
We want to sketch a proof of \yaref{thm:l16:3} in this case,
|
|
||||||
i.e.~show that if $(Z,T)$ is a proper factor of a minimal distal flow
|
|
||||||
$(X,T)$ then there is another factor $(Y,T)$ of $(X,T)$
|
|
||||||
which is a proper isometric extension of $Z$.
|
|
||||||
|
|
||||||
\begin{proof}[sketch] % TODO: Think about this
|
|
||||||
\leavevmode
|
|
||||||
\begin{enumerate}[1.]
|
|
||||||
\item For $x \in X$ define
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
F_x\colon X &\longrightarrow & \R \\
|
|
||||||
x' &\longmapsto & F(x,x').
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
\item Define an equivalence relation on $X$,
|
|
||||||
by $x_1 \sim x_2 :\iff \{x \in X : F_{x_1}(x) = F_{x_2}(x)\}$
|
|
||||||
is comeager in $X$\footnote{with respect to the E-topology}.
|
|
||||||
Then for all $g \in G$ we have
|
|
||||||
$x_1 \sim x_2 \implies gx_1 \sim ~ gx_2$.
|
|
||||||
|
|
||||||
Let $M \coloneqq \{[x]_{\sim } : x \in X\} = \faktor{X}{\sim}$
|
|
||||||
bet the quotient space.
|
|
||||||
It is compact, second countable and Hausdorff.
|
|
||||||
Let $\pi\colon X\to M$ denote the quotient map.
|
|
||||||
\item $(Y,T) \mathbin{\text{\reflectbox{$\coloneqq$}}} (M,T)$
|
|
||||||
is an isometric flow:
|
|
||||||
\begin{enumerate}
|
|
||||||
\item For $a > 0$, $x,x' \in X$ let
|
|
||||||
\[
|
|
||||||
W(x,x') \coloneqq \{g \in G : F(x, gx') < a\}.
|
|
||||||
\]
|
|
||||||
This turns out to be a subbasis of a topology
|
|
||||||
which is coarser than the original topology on $G$.
|
|
||||||
The new topology makes $G$ compact.
|
|
||||||
\item Let $\theta(g)$ be the transformation of $M$
|
|
||||||
defined by $\theta(g) \pi(x) = \pi(gx)$.
|
|
||||||
This is well defined.
|
|
||||||
Let $H = \theta(G)$.
|
|
||||||
This is just a quotient of $G$, $g \mapsto \theta(g)$
|
|
||||||
may not be injective.
|
|
||||||
\item One can show that $H$ is a topological group and $(M,H)$
|
|
||||||
is a flow.\footnote{This is non-trivial.}
|
|
||||||
\item Since $H$ is compact,
|
|
||||||
$(M,H)$ is equicontinuous, %\todo{We didn't define this}
|
|
||||||
i.e.~it is isometric.
|
|
||||||
In particular, $(M,T)$ is isometric.
|
|
||||||
\end{enumerate}
|
|
||||||
\item $M \neq \{\star\}$, i.e.~$(M,T)$ is non-trivial:
|
|
||||||
|
|
||||||
Suppose towards a contradiction that $M = \{\star\}$,
|
|
||||||
i.e.~$x_1 \sim x_2$ for all $x_1,x_2 \in X$.
|
|
||||||
Fix $x_2$. For every $x_1 \in X$
|
|
||||||
we have that
|
|
||||||
\[
|
|
||||||
\{x : F(x_1,x) = F(x_2,x)\}
|
|
||||||
\]
|
|
||||||
is comeager.
|
|
||||||
Let $x_1$ be a point of continuity of $F_{x_2}$.
|
|
||||||
Let $\langle a_n : n < \omega \rangle$ be a sequence
|
|
||||||
of elements that set, i.e.~$F(x_1, a_n) = F(x_2, a_n)$,
|
|
||||||
such that $a_n \to x_1$.
|
|
||||||
So by the continuity of $F_{x_2}$ at $x_1$
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
\lim_{n \to \infty} F(x_2, a_n) &=& F(x_2, x_1)
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
and by the definition of $F$
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
\lim_{n \to \infty} F(x_1,a_n) &=& F(x_1,x_1) = 0.
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
So
|
|
||||||
\[
|
|
||||||
F(x_2,x_1) = \lim_{n \to \infty} F(x_2, a_n) = \lim_{n \to \infty}
|
|
||||||
F(x_1,a_n) = 0
|
|
||||||
\]
|
|
||||||
and by distality we get $x_1 = x_2$.
|
|
||||||
Since almost all points of $X$
|
|
||||||
are points of continuity of $F_{x_2}$
|
|
||||||
(\yaref{thm:usccomeagercont})
|
|
||||||
this implies that $X \setminus \{x_2\}$ is meager.
|
|
||||||
But then $X = \{\star\} \lightning$.
|
|
||||||
\end{enumerate}
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\begin{theorem}\footnote{Not covered in class}
|
|
||||||
\label{thm:usccomeagercont}
|
|
||||||
Let $X$ be a metric space
|
|
||||||
and $\Gamma\colon X \to \R$ be upper semicontinuous.
|
|
||||||
Then the set of continuity points of $\Gamma$ is comeager.
|
|
||||||
\todo{Missing figure: upper semicontinuous function}
|
|
||||||
\end{theorem}
|
|
||||||
\begin{proof}
|
|
||||||
Take $x$ such that $\Gamma$ is not continuous at $x$.
|
|
||||||
Then there is an $\epsilon > 0$
|
|
||||||
and $x_n \to x$ such that
|
|
||||||
$\Gamma(x_n) + \epsilon \le \Gamma(x)$.
|
|
||||||
Take $q \in \Q$ such that $\Gamma(x) - \epsilon < q < \Gamma(x)$.
|
|
||||||
Then let
|
|
||||||
\[
|
|
||||||
B_q \coloneqq \{a \in X : \Gamma(a) \ge q\}.
|
|
||||||
\]
|
|
||||||
$X \setminus B_q = \{a \in X : \Gamma(a) < q\}$
|
|
||||||
is open, i.e.~$B_q$ is closed.
|
|
||||||
Note that $x \in F_q \coloneqq B_q \setminus B_q^\circ$
|
|
||||||
and $B_q \setminus B_q^\circ$ is nwd
|
|
||||||
as it is closed and has empty interior,
|
|
||||||
so $\bigcup_{q \in \Q} F_q$ is meager.
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,292 +0,0 @@
|
||||||
\subsection{The order of a flow}
|
|
||||||
\lecture{19}{2023-12-19}{Orders of flows}
|
|
||||||
|
|
||||||
See also \cite[\href{https://terrytao.wordpress.com/2008/01/24/254a-lecture-6-isometric-systems-and-isometric-extensions/}{Lecture 6}]{tao}.
|
|
||||||
|
|
||||||
|
|
||||||
\begin{definition}+
|
|
||||||
Let $X,Y$ be metric spaces. A family $F$ of functions $X \to Y$
|
|
||||||
is called \vocab{equicontinuous} at $x_0 \in X$
|
|
||||||
iff
|
|
||||||
\[
|
|
||||||
\forall \epsilon > 0.~\exists \delta > 0.~ \forall f \in F.~d_X(x_0, x) < \delta \implies d_Y(f(x_0),f(x)) < \epsilon.
|
|
||||||
\]
|
|
||||||
It is called equicontinuous iff it is equicontinuous at every point.
|
|
||||||
It is called \vocab{uniformly equicontinuous}
|
|
||||||
iff
|
|
||||||
\[
|
|
||||||
\forall \epsilon > 0.~\exists \delta > 0.~ \forall x_0 \in X.~\forall f \in F.~d_X(x_0, x) < \delta \implies d_Y(f(x_0),f(x)) < \epsilon.
|
|
||||||
\]
|
|
||||||
A flow $(X,T)$ is called equicontinuous iff $T$ is equicontinuous.
|
|
||||||
\end{definition}
|
|
||||||
Note that since $X$ compact the notions of equicontinuity and uniform
|
|
||||||
equicontinuity coincide.
|
|
||||||
|
|
||||||
\begin{fact}+[{\cite[Lecture 6, Exercise 1]{tao}}]
|
|
||||||
A flow $(X,T)$ is isometric iff it is equicontinuous.
|
|
||||||
\end{fact}
|
|
||||||
\begin{proof}
|
|
||||||
Clearly an isometric flow is equicontinuous.
|
|
||||||
On the other hand suppose that $T$ is uniformly equicontinuous.
|
|
||||||
Define a metric $\tilde{d}$ on $X$ by setting
|
|
||||||
$\tilde{d}(x,y) \coloneqq \sup_{t \in T} d(tx,ty)$.
|
|
||||||
By equicontinuity of $T$ we get that $\tilde{d}$ and $d$
|
|
||||||
induce the same topology on $X$.
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
|
|
||||||
\begin{question}
|
|
||||||
What is the minimal number of steps required
|
|
||||||
when building the tower to reach the flow
|
|
||||||
as in \yaref{thm:l16:3}?
|
|
||||||
\end{question}
|
|
||||||
\begin{definition}[{\cite[{}13.1]{Furstenberg}}]
|
|
||||||
Let $(X,T)$ be a quasi isometric flow,
|
|
||||||
and let $\eta$ be the smallest ordinal
|
|
||||||
such that there exists a quasi-isometric system $\{(X_\xi, T), \xi \le \eta\}$
|
|
||||||
with $(X,T) = (X_\xi, T)$.
|
|
||||||
Then $\eta$ is called the \vocab{order} of the flow.
|
|
||||||
\end{definition}
|
|
||||||
\begin{theorem}[Maximal isometric factor]
|
|
||||||
\label{thm:maxisomfactor}
|
|
||||||
For every flow $(X,T)$ there is a maximal factor $(Y,T)$, $\pi\colon X\to Y$,
|
|
||||||
i.e.~if $(Y',T), \pi'\colon X \to Y'$ is any isometric factor of $(X,T)$,
|
|
||||||
then $(Y',T)$ is a factor of $(Y,T)$.
|
|
||||||
% https://q.uiver.app/#q=WzAsMyxbMCwwLCIoWCxUKSJdLFsxLDEsIihZLFQpXFxcXFxcdGV4dHttYXhpbWFsIGlzb21ldHJpY30iXSxbMCwyLCIoWScsVCkiXSxbMCwyLCJcXHRleHR7aXNvbWV0cmljfSIsMl0sWzAsMV0sWzEsMiwiXFxleGlzdHMiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=
|
|
||||||
\[\begin{tikzcd}
|
|
||||||
{(X,T)} \\
|
|
||||||
& {\substack{(Y,T)\\\text{maximal isometric}}} \\
|
|
||||||
{(Y',T)}
|
|
||||||
\arrow["{\text{isometric}}"', from=1-1, to=3-1]
|
|
||||||
\arrow[from=1-1, to=2-2]
|
|
||||||
\arrow["\exists", dashed, from=2-2, to=3-1]
|
|
||||||
\end{tikzcd}\]
|
|
||||||
\end{theorem}
|
|
||||||
\begin{proof}
|
|
||||||
% TODO Think about this
|
|
||||||
We want to apply Zorn's lemma.
|
|
||||||
If suffices to show that isometric flows are closed under inverse limits,
|
|
||||||
i.e.~if $(Y_\alpha, f_{\alpha,\beta})$,
|
|
||||||
$\beta < \alpha \le \Theta$
|
|
||||||
are isometric, then the inverse limit $Y$ is isometric.%
|
|
||||||
\todo{Why does an inverse limit exist?}
|
|
||||||
% https://q.uiver.app/#q=WzAsNCxbMSwwLCJZX1xcYWxwaGEiXSxbMSwxLCJZX1xcYmV0YSJdLFswLDAsIlkiXSxbMiwwLCJYIl0sWzAsMSwiZl97XFxhbHBoYSwgXFxiZXRhfSJdLFsyLDAsImZfXFxhbHBoYSJdLFsyLDEsImZfXFxiZXRhIiwyXSxbMywwLCJcXHBpX1xcYWxwaGEiLDJdLFszLDEsIlxccGlfXFxiZXRhIl1d
|
|
||||||
\[\begin{tikzcd}
|
|
||||||
Y & {Y_\alpha} & X \\
|
|
||||||
& {Y_\beta}
|
|
||||||
\arrow["{f_{\alpha, \beta}}", from=1-2, to=2-2]
|
|
||||||
\arrow["{f_\alpha}", from=1-1, to=1-2]
|
|
||||||
\arrow["{f_\beta}"', from=1-1, to=2-2]
|
|
||||||
\arrow["{\pi_\alpha}"', from=1-3, to=1-2]
|
|
||||||
\arrow["{\pi_\beta}", from=1-3, to=2-2]
|
|
||||||
\end{tikzcd}\]
|
|
||||||
Consider
|
|
||||||
\[
|
|
||||||
\Delta_\alpha \coloneqq \{(y,y') \in Y^2 : f_{\alpha}(y) = f_\alpha(y')\}.
|
|
||||||
\]
|
|
||||||
Let $d$ be a metric on $Y$ and $d_{\alpha}$ a metric on $Y_{\alpha}$,
|
|
||||||
wlog.~$d, d_\alpha \le 1$.
|
|
||||||
Note that $\beta < \alpha \implies \Delta_\beta \supseteq \Delta_\alpha$
|
|
||||||
and
|
|
||||||
\[
|
|
||||||
\bigcap_{\alpha \le \theta}\Delta_\alpha = \{(y,y) : y \in Y\}.
|
|
||||||
\]
|
|
||||||
Consider
|
|
||||||
\[\{(y,y') \in \Delta_\alpha : d(y,y') \ge \epsilon\}\]
|
|
||||||
for any $\epsilon > 0$.
|
|
||||||
By the finite intersection property % TODO WHY? TODO what is this TODO for compact?
|
|
||||||
we get
|
|
||||||
\[
|
|
||||||
\exists \alpha.~f_\alpha(y) = f_\alpha(y') \implies d(y,y') < \epsilon,
|
|
||||||
\]
|
|
||||||
i.e.~$\forall z \in Y_\alpha.~\diam(f^{-1}_\alpha(z)) \le \epsilon$.
|
|
||||||
|
|
||||||
Towards a contradiction assume that $Y$ is not isometric,
|
|
||||||
i.e.~not equicontinuous.
|
|
||||||
Then there are $(y_j), (y'_j) \in Y$
|
|
||||||
such that $d(y_j,y'_j) \to 0$
|
|
||||||
and $\epsilon > 0, t_j \in T$
|
|
||||||
such that $d(t_jy_j, t_jy'_j) > \epsilon$.
|
|
||||||
|
|
||||||
By compactness wlog.~$(y_j)$ and $(y'_j)$
|
|
||||||
converge (to the same point).
|
|
||||||
Find $\alpha$ such that $f_\alpha(y) = f_{\alpha}(y') \implies d(y,y') < \frac{\epsilon}{4}$.
|
|
||||||
Let $z_j \coloneqq f_{\alpha}(y_j)$ and $z'_j \coloneqq f_\alpha(y'_j)$.
|
|
||||||
Then $(z_j)$ and $(z'_j)$ converge to the same point $z \in Y_\alpha$.
|
|
||||||
By equicontinuity of $(Y_\alpha, T)$,
|
|
||||||
$d_{Y_{\alpha}}(t_jz_j, t_jz'_j) \to 0$.
|
|
||||||
Wlog.~$(t_jz_j)$ and $(t_jz'_j)$ converge.
|
|
||||||
Let $z^\ast$ be their limit.
|
|
||||||
On the one hand, by the triangle inequality we get
|
|
||||||
\[
|
|
||||||
d(f^{-1}_\alpha(t_jz_j), f^{-1}_\alpha(t_jz_j')) > \underbrace{\epsilon}_{\mathclap{< d(t_jy_j, t_jy_j')}} - \overbrace{\frac{\epsilon}{4}}^{\mathclap{\text{Diameter of fiber}}}- \frac{\epsilon}{4} = \frac{\epsilon}{2}.
|
|
||||||
\]
|
|
||||||
|
|
||||||
On the other hand, from
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
d(f^{-1}_\alpha(t_jz_j), f^{-1}_{\alpha}(z^\ast)) &\to & 0,\\
|
|
||||||
d(f^{-1}_\alpha(t_jz'_j), f^{-1}_{\alpha}(z^{\ast})) &\to & 0,\\
|
|
||||||
\diam f^{-1}_\alpha(\{z^\ast\}) & <& \frac{\epsilon}{4}
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
we obtain
|
|
||||||
\[
|
|
||||||
d(f^{-1}_\alpha(t_jz_j), f^{-1}_\alpha(t_jz'_j)) < \frac{\epsilon}{2} \lightning.
|
|
||||||
\]
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
More generally we can show:
|
|
||||||
\begin{theorem}[{\cite[13.1]{Furstenberg}}]
|
|
||||||
Let $(X,T)$ be a distal flow
|
|
||||||
and $(Y,T) = \pi(X,T)$ a factor.
|
|
||||||
Then there exists an isometric extension $(Y,T)$ of $(Z,T)$
|
|
||||||
which is a factor of $(X,T)$,
|
|
||||||
such that $(Y,T)$ is maximal among such extensions,
|
|
||||||
i.e.~if $(Y',T)$ is any flow with these two properties,
|
|
||||||
then $(Y',T)$ is a factor of $(Y,T)$.
|
|
||||||
% https://q.uiver.app/#q=WzAsMyxbMCwwLCIoWCxUKSJdLFswLDIsIihaLFQpIl0sWzEsMSwiKFksVCkiXSxbMCwyXSxbMCwxLCJcXHBpIl0sWzIsMV1d
|
|
||||||
\[\begin{tikzcd}
|
|
||||||
{(X,T)} \\
|
|
||||||
& {(Y,T)} \\
|
|
||||||
{(Z,T)}
|
|
||||||
\arrow[from=1-1, to=2-2]
|
|
||||||
\arrow["\pi", from=1-1, to=3-1]
|
|
||||||
\arrow[from=2-2, to=3-1]
|
|
||||||
\end{tikzcd}\]
|
|
||||||
\end{theorem}
|
|
||||||
|
|
||||||
|
|
||||||
\begin{lemma}
|
|
||||||
\label{lec19:lem1}
|
|
||||||
Let four flows be given as in
|
|
||||||
|
|
||||||
% https://q.uiver.app/#q=WzAsNCxbMSwwLCIoWSxUKSJdLFsyLDEsIihaXzIsIFQpIl0sWzAsMSwiKFpfMSwgVCkiXSxbMSwyLCIoVyxUKSJdLFsyLDMsIndfMSJdLFsxLDMsIndfMiIsMl0sWzAsMiwiXFxwaV8xIl0sWzAsMSwiXFxwaV8yIiwyXV0=
|
|
||||||
\[\begin{tikzcd}
|
|
||||||
& {(Y,T)} \\
|
|
||||||
{(Z_1, T)} && {(Z_2, T)} \\
|
|
||||||
& {(W,T)}
|
|
||||||
\arrow["{w_1}", from=2-1, to=3-2]
|
|
||||||
\arrow["{w_2}"', from=2-3, to=3-2]
|
|
||||||
\arrow["{\pi_1}", from=1-2, to=2-1]
|
|
||||||
\arrow["{\pi_2}"', from=1-2, to=2-3]
|
|
||||||
\end{tikzcd}\]
|
|
||||||
|
|
||||||
Suppose that whenever $y \neq y' \in Y$,
|
|
||||||
then either % TODO REALLY?
|
|
||||||
$\pi_1(y) \neq \pi(y')$
|
|
||||||
or $\pi_2(y) \neq \pi_2(y')$.
|
|
||||||
|
|
||||||
If $(Z_1,T)$ is an isometric extension of $(W,T)$,
|
|
||||||
then $(Y,T)$ is an isometric extension of $(Z_2, T)$.
|
|
||||||
\end{lemma}
|
|
||||||
\begin{proof}
|
|
||||||
% TODO TODO TODO Think about this
|
|
||||||
For $z_1,z_1' \in Z_1$ with
|
|
||||||
$w_1(z_1) = w_1(z_1')$ let
|
|
||||||
$\rho(z_1,z_1')$ be the metric on the fiber of $Z_1$ over $W$.
|
|
||||||
Set $\sigma(y,y') \coloneqq \rho(\pi_1(y), \pi_1(y'))$ whenever $\pi_2(y) = \pi_2(y')$.
|
|
||||||
In this case $w_2 \circ \pi_2(y) = w_2 \circ \pi_2(y')$
|
|
||||||
and $w_1 \circ \pi_1(y) = w_1 \circ \pi_1(y')$,
|
|
||||||
so $\sigma$ is well defined.
|
|
||||||
$\sigma$ is a semi-metric\footnote{Like a metric, but the distinct points can have distance $0$.}
|
|
||||||
on the fibers of $Y$ over $Z_2$
|
|
||||||
and invariant under $T$.
|
|
||||||
|
|
||||||
$\sigma$ is a metric, since if
|
|
||||||
if $\pi_2(y) = \pi_2(y')$ and $\sigma(y,y') = 0$,
|
|
||||||
then $\pi_1(y) = \pi_1(y')$ or $y = y'$.
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
|
|
||||||
\begin{definition}
|
|
||||||
A quasi-isometric system
|
|
||||||
$\{(X_\xi, T) : \xi \le \eta\}$
|
|
||||||
is called \vocab{normal} if $(X_{\xi+1}, T)$ is the maximal
|
|
||||||
isometric extension of $(X_\xi,T)$ in $(X_\eta, T)$
|
|
||||||
for all $\xi < \eta$.
|
|
||||||
\end{definition}
|
|
||||||
\begin{theorem}[{\cite[{}13.2]{Furstenberg}}]
|
|
||||||
If $\{(X_\xi, T), \xi \le \eta\}$
|
|
||||||
is a normal quasi-isometric
|
|
||||||
system, then $(X_\eta, T)$ has order $\eta$.
|
|
||||||
\end{theorem}
|
|
||||||
\begin{proof}
|
|
||||||
We only sketch the proof here.
|
|
||||||
Details can be found in \cite{Furstenberg}, section 13.
|
|
||||||
Let $\{(X_\xi', T), \xi \le \eta'\} $ be
|
|
||||||
another quasi-isometric system
|
|
||||||
terminating with $(X_\eta, T) = (X'_{\eta'}, T)$.
|
|
||||||
We want to show that $\eta' \ge \eta$.
|
|
||||||
For this, we show that for all $\xi < \eta$,
|
|
||||||
$(X_\xi', T)$ is a factor of $(X_\xi ,T)$
|
|
||||||
using transfinite induction.
|
|
||||||
% https://q.uiver.app/#q=WzAsMTEsWzAsMSwiWCJdLFswLDIsIlhfXFxldGEiXSxbMCwwLCJYJ197XFxldGEnfSJdLFsxLDIsIlxcZG90cyJdLFsxLDAsIlxcZG90cyJdLFs0LDAsIlhfMSciXSxbNCwyLCJYXzEiXSxbMywwLCJYJ18yIl0sWzMsMiwiWF8yIl0sWzIsMCwiWCdfMyJdLFsyLDIsIlhfMyJdLFsyLDAsIiIsMix7ImxldmVsIjoyLCJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzAsMSwiIiwyLHsibGV2ZWwiOjIsInN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbMTAsOF0sWzgsNl0sWzcsNV0sWzksN10sWzEwLDksIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFs4LDcsIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFs2LDUsIiIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRvdHRlZCJ9fX1dLFsxLDEwLCJcXHBpXzMiLDIseyJjdXJ2ZSI6MX1dLFsxLDgsIlxccGlfMiIsMix7ImN1cnZlIjozfV0sWzEsNiwiXFxwaV8xIiwyLHsiY3VydmUiOjV9XSxbMiw5LCJcXHBpJ18zIiwwLHsiY3VydmUiOi0xfV0sWzIsNywiXFxwaSdfMiIsMCx7ImN1cnZlIjotM31dLFsyLDUsIlxccGknXzEiLDAseyJjdXJ2ZSI6LTV9XV0=
|
|
||||||
\[\begin{tikzcd}
|
|
||||||
{X'_{\eta'}} & \dots & {X'_3} & {X'_2} & {X_1'} \\
|
|
||||||
X \\
|
|
||||||
{X_\eta} & \dots & {X_3} & {X_2} & {X_1}
|
|
||||||
\arrow[Rightarrow, no head, from=1-1, to=2-1]
|
|
||||||
\arrow[Rightarrow, no head, from=2-1, to=3-1]
|
|
||||||
\arrow[from=3-3, to=3-4]
|
|
||||||
\arrow[from=3-4, to=3-5]
|
|
||||||
\arrow[from=1-4, to=1-5]
|
|
||||||
\arrow[from=1-3, to=1-4]
|
|
||||||
\arrow[dotted, from=3-3, to=1-3]
|
|
||||||
\arrow[dotted, from=3-4, to=1-4]
|
|
||||||
\arrow[dotted, from=3-5, to=1-5]
|
|
||||||
\arrow["{\pi_3}"', curve={height=6pt}, from=3-1, to=3-3]
|
|
||||||
\arrow["{\pi_2}"', curve={height=18pt}, from=3-1, to=3-4]
|
|
||||||
\arrow["{\pi_1}"', curve={height=30pt}, from=3-1, to=3-5]
|
|
||||||
\arrow["{\pi'_3}", curve={height=-6pt}, from=1-1, to=1-3]
|
|
||||||
\arrow["{\pi'_2}", curve={height=-18pt}, from=1-1, to=1-4]
|
|
||||||
\arrow["{\pi'_1}", curve={height=-30pt}, from=1-1, to=1-5]
|
|
||||||
\end{tikzcd}\]
|
|
||||||
% TODO: induction start?
|
|
||||||
|
|
||||||
Suppose we have
|
|
||||||
$(X'_\xi, T) = \theta((X_\xi, T)$.
|
|
||||||
Let $\pi_\xi$ and $\pi'_\xi$ denote the maps from $X$ to $X_\xi$ resp.~$X'_\xi$.
|
|
||||||
Set
|
|
||||||
\[Y \coloneqq \{(\pi_\xi(x), \pi'_{\xi+1}(x)) \in X_\xi \times X'_{\xi+ 1}: x \in X\}.\]
|
|
||||||
Then
|
|
||||||
|
|
||||||
% https://q.uiver.app/#q=WzAsNSxbMCwwLCIoWF97XFx4aSsxfSxUKSJdLFsyLDAsIihZLFQpIl0sWzMsMSwiKFgnX3tcXHhpKzF9LFQpIl0sWzIsMiwiKFgnX1xceGksVCkiXSxbMSwxLCIoWF9cXHhpLFQpIl0sWzAsNCwiXFx0ZXh0e21heC5+aXNvfSIsMV0sWzQsMywiXFx0aGV0YSIsMV0sWzIsMywie1xcY29sb3J7b3JhbmdlfVxcdGV4dHtpc299fSIsMV0sWzEsNCwie1xcY29sb3J7b3JhbmdlfVxcdGV4dHtpc299fSIsMV0sWzEsMl0sWzAsMSwiIiwwLHsiY3VydmUiOi0xLCJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=
|
|
||||||
\[\begin{tikzcd}
|
|
||||||
{(X_{\xi+1},T)} && {(Y,T)} \\
|
|
||||||
& {(X_\xi,T)} && {(X'_{\xi+1},T)} \\
|
|
||||||
&& {(X'_\xi,T)}
|
|
||||||
\arrow["{\text{max.~iso}}"{description}, from=1-1, to=2-2]
|
|
||||||
\arrow["\theta"{description}, from=2-2, to=3-3]
|
|
||||||
\arrow["{{\color{orange}\text{iso}}}"{description}, from=2-4, to=3-3]
|
|
||||||
\arrow["{{\color{orange}\text{iso}}}"{description}, from=1-3, to=2-2]
|
|
||||||
\arrow[from=1-3, to=2-4]
|
|
||||||
\arrow[curve={height=-6pt}, dashed, from=1-1, to=1-3]
|
|
||||||
\end{tikzcd}\]
|
|
||||||
|
|
||||||
The diagram commutes, since all maps are the induced maps.
|
|
||||||
By definition of $Y$ is clear that $\pi$ and $\pi'$ separate points in $Y$.
|
|
||||||
Thus \yaref{lec19:lem1} can be applied.
|
|
||||||
Since $\theta'$ is an isometric extension, so is $\pi$.
|
|
||||||
Then $(Y,T)$ is a factor of $(X_{\xi+1}, T)$ by
|
|
||||||
the maximality of the isometric extension
|
|
||||||
$(X_{\xi+1 }, T) \to (X_\xi, T)$.
|
|
||||||
|
|
||||||
In particular,
|
|
||||||
$(X'_{\xi+1}, T)$ is a factor of $(X_{\xi+1}, T)$.
|
|
||||||
\end{proof}
|
|
||||||
\begin{example}[{\cite[p. 513]{Furstenberg}}]
|
|
||||||
Let $X$ be the infinite torus
|
|
||||||
\[
|
|
||||||
X \coloneqq \{(\xi_1, \xi_2, \ldots) : \xi_i \in \C, |\xi_i| = 1\}.
|
|
||||||
\]
|
|
||||||
Let $\pi_n$ be the projection to the first $n$ coordinates
|
|
||||||
and $X_n \coloneqq \pi_n(X)$.
|
|
||||||
|
|
||||||
Let $\tau_1(\xi_1,\xi_2, \ldots, \xi_n, \ldots) = (e^{\i \alpha} \xi_1, \xi_1\xi_2, \ldots, \xi_{n-1}\xi_n, \ldots)$
|
|
||||||
where $\frac{\alpha}{\pi}$ is irrational.
|
|
||||||
Let $T = \langle \tau_1 \rangle \cong \Z$.
|
|
||||||
|
|
||||||
We will show that $(X_n,T)$ is minimal for all $n$,
|
|
||||||
and so $(X,T)$ is minimal.
|
|
||||||
Furthermore $(X_{n+1},T)$ is the maximal isometric extension of $(X_n,T)$
|
|
||||||
so $(X,T)$ has order $\omega$.
|
|
||||||
\end{example}
|
|
|
@ -229,28 +229,4 @@ Clearly $d_u$ is a metric.
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
There exists a countable dense subset.
|
There exists a countable dense subset.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{subproof}
|
\todo{handwritten solution}
|
||||||
Fix a metric $d_X$ on $X$ defining its topology.
|
|
||||||
Let
|
|
||||||
\[
|
|
||||||
C_{m,n} \coloneqq \{f \in \cC(X,Y) : \forall x,y \in X.~\left( d_X(x,y) < \frac{1}{m+1} \implies d(f(x), f(y)) <\frac{1}{n+1}\right) \}.
|
|
||||||
\]
|
|
||||||
|
|
||||||
Choose $X_m \subseteq X$ finite with $X \subseteq \bigcup_{x \in X_m} B_{\frac{1}{m+1}}(x)$.
|
|
||||||
Let $D_{m,n} \subseteq C_{m,n}$ be countable,
|
|
||||||
such that for every $f \in C_{m,n}$ and every $\eta > 0$,
|
|
||||||
there is $g \in D_{m,n}$ with $d(f(y), g(y)) < \frac{\eta}{3}$
|
|
||||||
for each $y \in X_m$.
|
|
||||||
Then $\bigcup_{m,n} D_{m,n}$ is dense in $\cC(X,Y)$:
|
|
||||||
Indeed if $f \in \cC(X,Y)$ and $\eta > 0$,
|
|
||||||
we finde $n > \frac{3}{\eta}$ and $m$ such that $f \in C_{m,n}$,
|
|
||||||
since $f$ is uniformly continuous.
|
|
||||||
Let $g \in D_{m,n}$ be such that $\forall y \in X_m.~d(f(y), g(y)) < \frac{1}{n+1}$.
|
|
||||||
We have $d_u(f,g) \le \eta$,
|
|
||||||
since for every $x \in X$, we find $y \in X_m$ with $d_X(x,y) < \frac{1}{m+1}$,
|
|
||||||
hence
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
d_Y(f(x), g(x)) &\le& d_Y(f(x), f(y)) + d_Y(f(y), g(y)) + d_Y(g(y), g(x))\\
|
|
||||||
&\le& \frac{1}{n+1} + \frac{1}{n+1} + \frac{1}{n+1} \le \eta.
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
\end{subproof}
|
|
||||||
|
|
|
@ -16,8 +16,9 @@
|
||||||
|
|
||||||
Material on topological dynamics:
|
Material on topological dynamics:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Terence Tao's notes on ergodic theory 254A: \cite{tao}
|
\item Terence Tao's notes on ergodic theory 254A:
|
||||||
\item \cite{Furstenberg} (uses very different notation!).
|
\url{https://terrytao.wordpress.com/category/teaching/254a-ergodic-theory/}
|
||||||
|
\item Furstenberg (uses very different notation!).
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -56,7 +56,6 @@
|
||||||
\usepackage{imakeidx}
|
\usepackage{imakeidx}
|
||||||
\makeindex[name = ccode, title = \texttt{C} functions and macros]
|
\makeindex[name = ccode, title = \texttt{C} functions and macros]
|
||||||
|
|
||||||
\PassOptionsToPackage{hyphens}{url}%
|
|
||||||
\usepackage{hyperref}
|
\usepackage{hyperref}
|
||||||
|
|
||||||
\usepackage[quotation]{knowledge}[22/02/12]
|
\usepackage[quotation]{knowledge}[22/02/12]
|
||||||
|
@ -154,5 +153,3 @@
|
||||||
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
||||||
\newcommand\tutorial[3]{\hrule{\color{darkgray}\hfill{\tiny[Tutorial #1, #2]}}}
|
\newcommand\tutorial[3]{\hrule{\color{darkgray}\hfill{\tiny[Tutorial #1, #2]}}}
|
||||||
\newcommand\nr[1]{\subsubsection{Exercise #1}}
|
\newcommand\nr[1]{\subsubsection{Exercise #1}}
|
||||||
|
|
||||||
\usepackage[bibfile=bibliography/references.bib, imagefile=bibliography/images.bib]{mkessler-bibliography}
|
|
||||||
|
|
|
@ -42,8 +42,6 @@
|
||||||
\input{inputs/lecture_15}
|
\input{inputs/lecture_15}
|
||||||
\input{inputs/lecture_16}
|
\input{inputs/lecture_16}
|
||||||
\input{inputs/lecture_17}
|
\input{inputs/lecture_17}
|
||||||
\input{inputs/lecture_18}
|
|
||||||
\input{inputs/lecture_19}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -72,7 +70,5 @@
|
||||||
|
|
||||||
\PrintVocabIndex
|
\PrintVocabIndex
|
||||||
|
|
||||||
\printbibliography
|
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
Loading…
Reference in a new issue