Compare commits
No commits in common. "957c9d97120f6ecb8dc0b2d4ac0966e43c23fb7e" and "fc4f57a8b043b95ba7f84a1583333d8ebb0ddd3a" have entirely different histories.
957c9d9712
...
fc4f57a8b0
5 changed files with 16 additions and 112 deletions
|
@ -102,13 +102,14 @@
|
||||||
Equivalently
|
Equivalently
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $\overline{A}$ is nwd,
|
\item $\overline{A}$ is nwd,
|
||||||
\item $X \setminus \overline{A}$ is dense in $X$,%
|
\item $X \setminus A$ is dense in $X$,
|
||||||
\item $\forall \emptyset \neq U \overset{\text{open}}{\subseteq} X.~
|
\item $\forall \emptyset \neq U \overset{\text{open}}{\subseteq} X.~
|
||||||
\exists \emptyset \neq V \overset{\text{open}}{\subseteq} U.~
|
\exists \emptyset \neq V \overset{\text{open}}{\subseteq} U.~
|
||||||
V\cap A = \emptyset$.
|
V\cap A = \emptyset$.
|
||||||
(If we intersect $A$ with an open $U$,
|
(If we intersect $A$ with an open $U$,
|
||||||
then $A \cap U$ is not dense in $U$).
|
then $A \cap U$ is not dense in $U$).
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
%\todo{Think about this}
|
||||||
|
|
||||||
A set $B \subseteq X$ is \vocab{meager}
|
A set $B \subseteq X$ is \vocab{meager}
|
||||||
(or \vocab{first category}),
|
(or \vocab{first category}),
|
||||||
|
|
|
@ -1,22 +1,14 @@
|
||||||
\lecture{05}{2023-10-31}{}
|
\lecture{05}{2023-10-31}{}
|
||||||
|
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
\begin{itemize}
|
A set $A$ is nwd iff $\overline{A}$ is nwd.
|
||||||
\item A set $A$ is nwd iff $\overline{A}$ is nwd.
|
|
||||||
\item If $F$ is closed then $F$ is nwd iff $X \setminus F$ is open and dense.
|
|
||||||
\item Any meager set $B$ is contained in a meager $F_{\sigma}$-set.
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
|
If $F$ is closed then
|
||||||
|
$F$ is nwd iff $X \setminus F$ is open and dense.
|
||||||
|
|
||||||
|
Any meager set $B$ is contained in
|
||||||
|
a meager $F_{\sigma}$-set.
|
||||||
\end{fact}
|
\end{fact}
|
||||||
\begin{proof} % remove?
|
|
||||||
\begin{itemize}
|
|
||||||
\item This follows from the definition as $\overline{\overline{A}} = \overline{A}$.
|
|
||||||
\item Trivial.
|
|
||||||
\item Let $B = \bigcup_{n < \omega} B_n$ be a union of nwd sets.
|
|
||||||
Then $B \subseteq \bigcup_{n < \omega} \overline{B_n}$.
|
|
||||||
\end{itemize}
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
A \vocab{$\sigma$-algebra} on a set $X$
|
A \vocab{$\sigma$-algebra} on a set $X$
|
||||||
|
@ -54,7 +46,7 @@
|
||||||
\[
|
\[
|
||||||
\left( \bigcup_{n < \omega} A_n \right) \symdif \left( \bigcup_{n < \omega} U_n \right)
|
\left( \bigcup_{n < \omega} A_n \right) \symdif \left( \bigcup_{n < \omega} U_n \right)
|
||||||
\]
|
\]
|
||||||
is meager,
|
is meager,\todo{small exercise}
|
||||||
hence $\bigcup_{n < \omega} A_n \in \cA$.
|
hence $\bigcup_{n < \omega} A_n \in \cA$.
|
||||||
|
|
||||||
Let $A \in \cA$.
|
Let $A \in \cA$.
|
||||||
|
@ -69,9 +61,7 @@
|
||||||
In particular, $F \symdif \inter(F)$ is nwd.
|
In particular, $F \symdif \inter(F)$ is nwd.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{refproof}{thm:bairesigma:c1}
|
\begin{refproof}{thm:bairesigma:c1}
|
||||||
$F \setminus \inter(F)$ is closed,
|
\todo{TODO}
|
||||||
hence $\overline{F \setminus \inter(F)} = F \setminus \inter(F)$.
|
|
||||||
Clearly $\inter(F\setminus\inter(F)) = \emptyset$.
|
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
|
||||||
From the claim we get that
|
From the claim we get that
|
||||||
|
|
|
@ -113,7 +113,7 @@ and $\Pi^0_2 = G_\delta$.
|
||||||
|
|
||||||
Furthermore define
|
Furthermore define
|
||||||
\[
|
\[
|
||||||
\Delta^0_\alpha(X) \coloneqq \Sigma^0_\alpha(X) \cap \Pi^0_\alpha(X),
|
\Delta^0_\alpha(X(X)) \coloneqq \Sigma^0_\alpha(X) \cap \Pi^0_\alpha(X),
|
||||||
\]
|
\]
|
||||||
i.e.~$\Delta^0_1$ is the set of clopen sets.
|
i.e.~$\Delta^0_1$ is the set of clopen sets.
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
\lecture{20}{2024-01-09}{The Infinite Torus}
|
\lecture{20}{2024-01-09}{The infinite Torus}
|
||||||
|
|
||||||
\begin{example}
|
\begin{example}
|
||||||
\footnote{This is the same as \yaref{ex:19:inftorus},
|
\footnote{This is the same as \yaref{ex:19:inftorus},
|
||||||
|
@ -132,7 +132,6 @@ coordinates.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
\label{rem:l20:sigma}
|
|
||||||
Note that for
|
Note that for
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
\sigma\colon (S^1)^d &\longrightarrow & S^1 \\
|
\sigma\colon (S^1)^d &\longrightarrow & S^1 \\
|
||||||
|
@ -168,15 +167,14 @@ coordinates.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{refproof}{thm:taudminimal:help}
|
\begin{refproof}{thm:taudminimal:help}
|
||||||
Let $S \coloneqq \tau_d$, $T \coloneqq \tau_{d+1}$ and $Y \coloneqq (S^1)^d$.
|
Let $s \coloneqq \tau_d$ and $Y \coloneqq (S^1)^d$.
|
||||||
Consider
|
Consider
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
\gamma\colon S^1 &\longrightarrow & Y \\
|
\gamma\colon S^1 &\longrightarrow & Y \\
|
||||||
x &\longmapsto & (x,x,\ldots,x).
|
x &\longmapsto & (x,x,\ldots,x)
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
Note that
|
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
\item $\gamma$ and $S \circ \gamma$ are homotopic
|
\item $\gamma$ and $s \circ \gamma$ are homotopic
|
||||||
via
|
via
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
H\colon S^1 \times [0,1] &\longrightarrow & (S^1)^d \\
|
H\colon S^1 \times [0,1] &\longrightarrow & (S^1)^d \\
|
||||||
|
@ -187,7 +185,9 @@ coordinates.
|
||||||
since $\sigma(\gamma(x)) = \sigma((x,\ldots,x)) = x$.
|
since $\sigma(\gamma(x)) = \sigma((x,\ldots,x)) = x$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
|
[to be continued]
|
||||||
\phantom\qedhere
|
\phantom\qedhere
|
||||||
|
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,87 +0,0 @@
|
||||||
\lecture{21}{2024-01-12}{Iterated Skew Shift}
|
|
||||||
|
|
||||||
\begin{refproof}{thm:taudminimal:help}
|
|
||||||
Suppose towards a contradiction that
|
|
||||||
$Y \times S^1$ contains a proper minimal subflow $Z$.
|
|
||||||
Consider the projection $\pi\colon Y \times S^1 \to Y$.
|
|
||||||
By minimality of $Y$, we have $\pi(Z) = Y$.
|
|
||||||
Note that for every $\theta \in S^1$, $\theta \cdot Z$ is minimal,
|
|
||||||
so either $\theta \cdot Z = Z$ or $(\theta \cdot Z)\cap Z = \emptyset$.
|
|
||||||
|
|
||||||
Let $H = \{\theta \in S^1 : \theta \cdot Z = Z\}$.
|
|
||||||
$H$ is a closed subgroup of $S^1$.
|
|
||||||
% H is a rotation of Z containing 1 (?)
|
|
||||||
Therefore either $H = S^1$ (but in that case $Z = Y \times S^1$),
|
|
||||||
or there exists $m \in \Z$ such that $H = \{ \xi \in S^1 : \xi^m = 1 \}$
|
|
||||||
by \yaref{fact:tau1minimal}.
|
|
||||||
|
|
||||||
Note that if $(y, \beta) \in Z$ then for $t \in S^1$,
|
|
||||||
we have
|
|
||||||
\[
|
|
||||||
(y, \beta \cdot t) \in Z \iff t^m = 1.
|
|
||||||
\]
|
|
||||||
Therefore for every $y \in Y$, there are exactly $m$ many
|
|
||||||
$\xi \in S^1$
|
|
||||||
such that $(y, \xi) \in Z$.
|
|
||||||
|
|
||||||
Specifically for all $y$ there exists $\beta^{(y)} \in S^1$
|
|
||||||
such that $(y,\xi) \in Z$ iff
|
|
||||||
\[
|
|
||||||
\xi \in \{\beta^{(y)} \cdot t_1, \beta^{(y)} \cdot t_2, \ldots,\beta^{(y)} \cdot t_m\},
|
|
||||||
\]
|
|
||||||
where the $t_i \in S^1$
|
|
||||||
are such that
|
|
||||||
$t_i^m = 1$ for all $i$ and $i \neq j \implies t_i \neq t_j$,
|
|
||||||
i.e.~the $t_i$ are the $m$\textsuperscript{th} roots of unity.
|
|
||||||
|
|
||||||
Consider $f \colon (y,\xi) \mapsto (y, \xi^m)$.
|
|
||||||
Since $(\beta^{(y)} \cdot t_i)^m = (\beta^{(y)})^m$
|
|
||||||
we get a continuous\todo{Why is this continuous?}
|
|
||||||
function $\phi\colon Y \to S^1$
|
|
||||||
such that
|
|
||||||
\[
|
|
||||||
Z = \{(y,\xi) \in Y \times S^1 : \xi^m = \phi(y)\}.
|
|
||||||
\]
|
|
||||||
% namely
|
|
||||||
% \begin{IEEEeqnarray*}{rCl}
|
|
||||||
% \phi\colon Y &\longrightarrow & S^1 \\
|
|
||||||
% y &\longmapsto & \beta^{(y)}.
|
|
||||||
% \end{IEEEeqnarray*}
|
|
||||||
|
|
||||||
Note that $f(Z)$ is homeomorphic to $Y$.\todo{Why?}
|
|
||||||
|
|
||||||
\begin{claim}
|
|
||||||
$\phi(S(y)) = \phi(y) \cdot (\sigma(y))^m$.
|
|
||||||
\end{claim}
|
|
||||||
\begin{subproof}
|
|
||||||
We have $T(y, \xi) = (S(y), \sigma(y) \cdot \xi)$
|
|
||||||
(cf.~\yaref{rem:l20:sigma}).
|
|
||||||
$Z$ is invariant under $T$.
|
|
||||||
So for $(y, \xi) \in Z$ we get $T(y, \xi) = ({\color{red}S(y)}, {\color{blue}\sigma(y) \cdot \xi}) \in Z$.
|
|
||||||
Thus
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
\phi({\color{red}S(y)}) &=& ({\color{blue}\sigma(y) \cdot \xi})^m\\
|
|
||||||
&=& (\sigma(y))^m \cdot \xi^m\\
|
|
||||||
&=& (\sigma(y))^m \cdot \phi(y).
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
\end{subproof}
|
|
||||||
Applying $\gamma$ we obtain
|
|
||||||
\[
|
|
||||||
[\phi \circ S \circ \gamma] = [\phi \circ \gamma] + [x \mapsto (\sigma(\gamma(x))^n].
|
|
||||||
\]
|
|
||||||
$S\circ \gamma$ is homotopic to $\gamma$,
|
|
||||||
so $[\phi \circ S \circ \gamma] = [\phi \circ \gamma]$.
|
|
||||||
Thus $[x \mapsto (\sigma(\gamma(x))^n] = 0$,
|
|
||||||
but that is a contradiction to (b) $\lightning$
|
|
||||||
\end{refproof}
|
|
||||||
|
|
||||||
Let $X_n \coloneqq (S^1)^n$ and $X \coloneqq (S^1)^{\N}$.
|
|
||||||
\begin{theorem}
|
|
||||||
$(X_n, \tau_n)$ is the maximal isometric extension of $(X_{n-1}, \tau_{n-1})$
|
|
||||||
in $(X,\tau)$.
|
|
||||||
\end{theorem}
|
|
||||||
\begin{corollary}
|
|
||||||
The order of $(X,\tau)$ is $\omega$.
|
|
||||||
\end{corollary}
|
|
||||||
\todo{I could not attend lecture 21 as I was sick. The official notes on the lecture are very short.
|
|
||||||
Is something missing in the official notes?}
|
|
Loading…
Reference in a new issue