Compare commits
No commits in common. "6c3d59bfded487f079b26d225ee1dd16bf64d3bf" and "41be2236215df28e3203beaf67e9b3f3d998cf40" have entirely different histories.
6c3d59bfde
...
41be223621
5 changed files with 12 additions and 347 deletions
|
@ -119,6 +119,7 @@
|
||||||
|
|
||||||
The complement of a meager set is called
|
The complement of a meager set is called
|
||||||
\vocab{comeager}.
|
\vocab{comeager}.
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
\begin{example}
|
\begin{example}
|
||||||
$\Q \subseteq \R$ is meager.
|
$\Q \subseteq \R$ is meager.
|
||||||
|
@ -127,7 +128,7 @@
|
||||||
Let $A, B \subseteq X$.
|
Let $A, B \subseteq X$.
|
||||||
We write $A =^\ast B$
|
We write $A =^\ast B$
|
||||||
iff the \vocab{symmetric difference},
|
iff the \vocab{symmetric difference},
|
||||||
$A \symdif B \coloneqq (A\setminus B) \cup (B \setminus A)$,
|
$A \mathop{\triangle} B \coloneqq (A\setminus B) \cup (B \setminus A)$,
|
||||||
is meager.
|
is meager.
|
||||||
\end{notation}
|
\end{notation}
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
|
@ -143,14 +144,13 @@ Note that open sets and meager sets have the Baire property.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{example}
|
% \begin{example}
|
||||||
\begin{itemize}
|
% $\Q \subseteq \R$ is $F_\sigma$.
|
||||||
\item $\Q \subseteq \R$ is $F_\sigma$.
|
%
|
||||||
\item $\R \setminus \Q \subseteq \R$ is $G_\delta$.
|
% $\R \setminus \Q \subseteq \R$ is $G_\delta$.
|
||||||
\item $\Q \subseteq \R$ is not $G_{\delta}$.
|
%
|
||||||
(It is dense and meager,
|
% $\Q \subseteq \R$ is not $G_{\delta}$.
|
||||||
hence it can not be $G_\delta$
|
% (It is dense and meager,
|
||||||
by the Baire category theorem).
|
% hence it can not be $G_\delta$,
|
||||||
\end{itemize}
|
% by the Baire category theorem).
|
||||||
|
% \end{example}
|
||||||
\end{example}
|
|
||||||
|
|
|
@ -1,271 +0,0 @@
|
||||||
\lecture{05}{2023-10-31}{}
|
|
||||||
|
|
||||||
\begin{fact}
|
|
||||||
A set $A$ is nwd iff $\overline{A}$ is nwd.
|
|
||||||
|
|
||||||
If $F$ is closed then
|
|
||||||
$F$ is nwd iff $X \setminus F$ is open and dense.
|
|
||||||
|
|
||||||
Any meager set $B$ is contained in
|
|
||||||
a meager $F_{\sigma}$-set.
|
|
||||||
\end{fact}
|
|
||||||
|
|
||||||
\begin{definition}
|
|
||||||
A \vocab{$\sigma$-algebra} on a set $X$
|
|
||||||
is a collection of subsets of $X$
|
|
||||||
such that:
|
|
||||||
\begin{itemize}
|
|
||||||
\item $\emptyset, X \in \cA$,
|
|
||||||
\item $ A \in \cA \implies X \setminus A \in \cA$,
|
|
||||||
\item $(A_i)_{i < \omega}, A_i \in \cA \implies \bigcup_{i < \omega} A_i \in \cA$.
|
|
||||||
\end{itemize}
|
|
||||||
\end{definition}
|
|
||||||
\begin{fact}
|
|
||||||
Since $\bigcap_{i < \omega} A_i = \left( \bigcup_{i < \omega} A_i^c \right)^c$
|
|
||||||
we have that $\sigma$-algebras are closed under countable intersections.
|
|
||||||
\end{fact}
|
|
||||||
|
|
||||||
\begin{theorem}
|
|
||||||
\label{thm:bairesigma}
|
|
||||||
Let $X$ be a topological space.
|
|
||||||
Then the collection of sets with the Baire property
|
|
||||||
is a $\sigma$-algebra on $X$.
|
|
||||||
|
|
||||||
It is the smallest $\sigma$-algebra
|
|
||||||
containing all meager and open sets.
|
|
||||||
\end{theorem}
|
|
||||||
\begin{refproof}{thm:bairesigma}
|
|
||||||
Let $\cA$ be the collection of sets with the Baire property.
|
|
||||||
Since open sets have the Baire property,
|
|
||||||
we have $\emptyset, X \in \cA$.
|
|
||||||
|
|
||||||
|
|
||||||
Let $A_n \in \cA$ for all $n < \omega$.
|
|
||||||
Take $U_n$ such that $A_n \symdif U_n$ is meager.
|
|
||||||
Then
|
|
||||||
\[
|
|
||||||
\left( \bigcup_{n < \omega} A_n \right) \symdif \left( \bigcup_{n < \omega} U_n \right)
|
|
||||||
\]
|
|
||||||
is meager,\todo{small exercise}
|
|
||||||
hence $\bigcup_{n < \omega} A_n \in \cA$.
|
|
||||||
|
|
||||||
Let $A \in \cA$.
|
|
||||||
Take some open $U$ such that $U \symdif A$ is meager.
|
|
||||||
We have $(X \setminus U) \symdif (X \setminus A) = U \symdif A$.
|
|
||||||
|
|
||||||
\begin{claim}
|
|
||||||
\label{thm:bairesigma:c1}
|
|
||||||
If $F$ is closed,
|
|
||||||
then $F \setminus \inter(F)$
|
|
||||||
is nwd.
|
|
||||||
In particular, $F \symdif \inter(F)$ is nwd.
|
|
||||||
\end{claim}
|
|
||||||
\begin{refproof}{thm:bairesigma:c1}
|
|
||||||
\todo{TODO}
|
|
||||||
\end{refproof}
|
|
||||||
|
|
||||||
From the claim we get that
|
|
||||||
$X \setminus A =^\ast X \setminus U =^\ast \inter(X \setminus U)$.
|
|
||||||
Hence $X \setminus A \in \cA$.
|
|
||||||
|
|
||||||
|
|
||||||
It is clear that all meager sets have the Baire property.
|
|
||||||
|
|
||||||
Let $A \in \cA$. Then $A = (A \setminus U) \cup (A \cap U)$
|
|
||||||
for some open $U$
|
|
||||||
such that $A \setminus U$ is meager.
|
|
||||||
We have $A \cap U = U \setminus (U \setminus A)$.
|
|
||||||
Thus we get that $\cA$ is the minimal $\sigma$-algebra
|
|
||||||
containing all meager and all open sets.
|
|
||||||
\end{refproof}
|
|
||||||
|
|
||||||
%\begin{example}
|
|
||||||
% Nwd set of positive measure.
|
|
||||||
% TODO
|
|
||||||
% remove open intervals such that their length does not add to 0
|
|
||||||
%
|
|
||||||
%\end{example}
|
|
||||||
|
|
||||||
\begin{theorem}[Baire Category theorem]
|
|
||||||
Let $X$ be a completely metrizable space.
|
|
||||||
Then every comeager set of $X$ is dense in $X$.
|
|
||||||
\end{theorem}
|
|
||||||
\todo{Proof (copy from some other lecture)}
|
|
||||||
\begin{proposition}
|
|
||||||
Let $X$ be a topological space.
|
|
||||||
The following are equivalent:
|
|
||||||
\begin{enumerate}[(i)]
|
|
||||||
\item Every nonempty open set
|
|
||||||
is non-meager in $X$.
|
|
||||||
\item Every comeager set is dense.
|
|
||||||
\item The intersection of countable many
|
|
||||||
open dense sets is dense.
|
|
||||||
\end{enumerate}
|
|
||||||
\end{proposition}
|
|
||||||
\begin{proof}
|
|
||||||
\todo{Proof (short)}
|
|
||||||
|
|
||||||
(iii) $\implies$ (i)
|
|
||||||
Let us first show that $X$ is non-meager.
|
|
||||||
Suppose that $X$ is meager. Then $X = \bigcup_{n} A_n = \bigcup_{n} \overline{A_n}$
|
|
||||||
is the countable union of nwd sets.
|
|
||||||
We have that
|
|
||||||
\[
|
|
||||||
\emptyset = \bigcap_{n} (X \setminus \overline{A_n})
|
|
||||||
\]
|
|
||||||
is dense by (iii).
|
|
||||||
This proof can be adapted to other open sets $X$.
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
|
|
||||||
% TODO Fubini
|
|
||||||
\begin{notation}
|
|
||||||
Let $X ,Y$ be topological spaces,
|
|
||||||
$A \subseteq X \times Y$,
|
|
||||||
$x \in X, y \in Y$.
|
|
||||||
|
|
||||||
Let
|
|
||||||
\[
|
|
||||||
A_x \coloneqq \{y \in Y : (x,y) \in A\}
|
|
||||||
\]
|
|
||||||
and
|
|
||||||
\[
|
|
||||||
A^y \coloneqq \{x \in X : (x,y) \in A\} .
|
|
||||||
\]
|
|
||||||
\end{notation}
|
|
||||||
|
|
||||||
The following similar to Fubini,
|
|
||||||
but for meager sets:
|
|
||||||
|
|
||||||
\begin{theorem}[Kuratowski-Ulam]
|
|
||||||
\label{thm:kuratowskiulam}
|
|
||||||
Let $X,Y$ be second countable topological spaces.
|
|
||||||
Let $A \subseteq X \times Y$
|
|
||||||
be a set with the Baire property.
|
|
||||||
|
|
||||||
Then
|
|
||||||
\begin{enumerate}[(i)]
|
|
||||||
\item $\{x \in X : A_x \text{ has the BP }\}$
|
|
||||||
is comeager\footnote{Note that not necessarily all sections
|
|
||||||
have the BP. For example $\{x\} \times Y$ is meager in $X \times Y$}
|
|
||||||
and similarly for $y$.
|
|
||||||
\item $A$ is meager
|
|
||||||
\begin{IEEEeqnarray*}{rll}
|
|
||||||
\iff &\{x \in X : A_x \text{ is meager }\}&\text{ is comeager}\\
|
|
||||||
\iff &\{y \in Y : A^y \text{ is meager }\}& \text{ is comeager}.
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
\item $A$ is comeager
|
|
||||||
\begin{IEEEeqnarray*}{rll}
|
|
||||||
\iff & \{x \in X: A_x \text{ is comeager }\} &\text{ is comeager}\\
|
|
||||||
\iff & \{y \in Y: A^y \text{ is comeager}\} & \text{ is comeager}.
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
\end{enumerate}
|
|
||||||
\end{theorem}
|
|
||||||
\begin{refproof}{thm:kuratowskiulam}
|
|
||||||
(ii) and (iii) are equivalent by passing to the complement.
|
|
||||||
|
|
||||||
\begin{claim}%[1a]
|
|
||||||
\label{thm:kuratowskiulam:c1a}
|
|
||||||
|
|
||||||
If $F \overset{\text{closed}}{\subseteq} X \times Y$
|
|
||||||
is nwd,
|
|
||||||
then
|
|
||||||
\[
|
|
||||||
\{x \in X : F_x \text{is nwd}\}
|
|
||||||
\]
|
|
||||||
is comeager.
|
|
||||||
\end{claim}
|
|
||||||
\begin{refproof}{thm:kuratowskiulam:c1a}
|
|
||||||
Put $W = F^c$.
|
|
||||||
This is open and dense in $X \times Y$.
|
|
||||||
It suffices to show that $\{x \in X : W_x \text{ is dense}\}$
|
|
||||||
is comeager.
|
|
||||||
Note that $W_x$ is open for all $x$.
|
|
||||||
|
|
||||||
Fix a countable basis $(V_n)$ of $Y$
|
|
||||||
with $V_n$ non-empty.
|
|
||||||
We want to show that
|
|
||||||
\[
|
|
||||||
\{x \in X: \forall n.~ (W_x \cap V_n) \neq \emptyset\}
|
|
||||||
\]
|
|
||||||
is a comeager set.
|
|
||||||
This is equivalent to
|
|
||||||
\[
|
|
||||||
\{x \in X : (W_x \cap V_n) \neq \emptyset\}
|
|
||||||
\]
|
|
||||||
being comeager for all $n$,
|
|
||||||
because the intersection
|
|
||||||
of countably many comeager sets is comeager.
|
|
||||||
|
|
||||||
Fix $n$ and let $U_n \coloneqq \{x \in X: (W_x \cap V_n) = \emptyset\}$.
|
|
||||||
We will show that $U_n$ is open and dense,
|
|
||||||
hence it is comeager.
|
|
||||||
|
|
||||||
$U_n = \proj_x(W \cap (X \times V_n))$ is open
|
|
||||||
since projections of open sets are open.
|
|
||||||
|
|
||||||
Let $U \subseteq X$ be nonempty and open.
|
|
||||||
We need to show that $U \cap U_n \neq \emptyset$.
|
|
||||||
It is
|
|
||||||
\[
|
|
||||||
U \cap U_n = \proj_x(W \cap (U \times V_n))
|
|
||||||
\]
|
|
||||||
nonempty since $W$ is dense.
|
|
||||||
|
|
||||||
\end{refproof}
|
|
||||||
|
|
||||||
\begin{claim} % [1a']
|
|
||||||
\label{thm:kuratowskiulam:c1ap}
|
|
||||||
If $F \subseteq X \times Y$
|
|
||||||
is nwd,
|
|
||||||
then
|
|
||||||
\[
|
|
||||||
\{x \in X : F_x \text{is nwd}\}
|
|
||||||
\]
|
|
||||||
is comeager.
|
|
||||||
|
|
||||||
\end{claim}
|
|
||||||
\begin{refproof}{thm:kuratowskiulam:c1ap}
|
|
||||||
We have that $\overline{F}$ is nwd.
|
|
||||||
Hence by \yaref{thm:kuratowskiulam:c1a}
|
|
||||||
the set
|
|
||||||
\[
|
|
||||||
\{x \in X: \overline{F_x} \text{ is nwd}\} \subseteq
|
|
||||||
\{x \in X: F_x \text{ is nwd}\}
|
|
||||||
\]
|
|
||||||
is comeager.
|
|
||||||
\end{refproof}
|
|
||||||
|
|
||||||
\begin{claim}% [1b]
|
|
||||||
\label{thm:kuratowskiulam:c1b}
|
|
||||||
|
|
||||||
If $M \subseteq X \times Y$ is meager,
|
|
||||||
then
|
|
||||||
\[
|
|
||||||
\{x \in X : M_x \text{ is meager}\}
|
|
||||||
\]
|
|
||||||
is comeager.
|
|
||||||
\end{claim}
|
|
||||||
\begin{refproof}{thm:kuratowskiulam:c1b}
|
|
||||||
This follows from \yaref{thm:kuratowskiulam:c1ap}:
|
|
||||||
Let $M = \bigcup_{n < \omega} F_n$
|
|
||||||
where the $F_n$ are nwd.
|
|
||||||
Apply \yaref{thm:kuratowskiulam:c1ap}
|
|
||||||
to each $F_n$.
|
|
||||||
We get that
|
|
||||||
$M_x$ is comeager
|
|
||||||
as a countable intersection of comeager sets.
|
|
||||||
\end{refproof}
|
|
||||||
|
|
||||||
\todo{Finish proof}
|
|
||||||
\phantom\qedhere
|
|
||||||
\end{refproof}
|
|
||||||
|
|
||||||
\begin{remark}
|
|
||||||
Suppose that $A$ has the BP.
|
|
||||||
Then there is an open $U$ such that
|
|
||||||
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
|
|
||||||
Then $A = U \symdif M$.
|
|
||||||
\end{remark}
|
|
||||||
|
|
||||||
|
|
|
@ -1,61 +0,0 @@
|
||||||
\tutorial{02}{2023-10-24}{}
|
|
||||||
|
|
||||||
% Points: 15 / 16
|
|
||||||
|
|
||||||
\subsubsection{Exercise 4}
|
|
||||||
|
|
||||||
\begin{fact}
|
|
||||||
Let $X $ be a compact Hausdorffspace.
|
|
||||||
Then the following are equivalent:
|
|
||||||
\begin{enumerate}[(i)]
|
|
||||||
\item $X$ is Polish,
|
|
||||||
\item $X$ is metrisable,
|
|
||||||
\item $X$ is second countable.
|
|
||||||
\end{enumerate}
|
|
||||||
\end{fact}
|
|
||||||
\begin{proof}
|
|
||||||
(i) $\implies$ (ii) clear
|
|
||||||
|
|
||||||
(i) $\implies$ (iii) clear
|
|
||||||
|
|
||||||
(ii) $\implies$ (i) Consider the cover $\{B_{\epsilon}(x) | x \in X\}$
|
|
||||||
for every $\epsilon \in \Q$
|
|
||||||
and chose a finite subcover.
|
|
||||||
Then the midpoints of the balls from the cover
|
|
||||||
form a countable dense subset.
|
|
||||||
|
|
||||||
The metric is complete as $X$ is compact.
|
|
||||||
(For metric spaces: compact $\iff$ seq.~compact $\iff$ complete and totally bounded)
|
|
||||||
|
|
||||||
(iii) $\implies$ (ii)
|
|
||||||
Use Urysohn's metrisation theorem and the fact that compact
|
|
||||||
Hausdorff spaces are normal
|
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
Let $X$ be compact Polish (compact metrisable $\implies$ compact Polish)
|
|
||||||
and $Y $ Polish.
|
|
||||||
Let $\cC(X,Y)$ be the set of continuous functions $X \to Y$.
|
|
||||||
Consider the metric $d_u(f,g) \coloneqq \sup_{x \in X} |d(f(x), g(x))|$.
|
|
||||||
Clearly $d_u$ is a metric.
|
|
||||||
|
|
||||||
\begin{claim}
|
|
||||||
$d_u$ is complete.
|
|
||||||
\end{claim}
|
|
||||||
\begin{subproof}
|
|
||||||
Let $(f_n)$ be a Cauchy sequence in $\cC(X,Y)$.
|
|
||||||
A $Y$ is complete,
|
|
||||||
there exists a pointwise limit $f$.
|
|
||||||
|
|
||||||
$f_n$ converges uniformly to $f$:
|
|
||||||
|
|
||||||
\[
|
|
||||||
d(f_n(x), f(x)) \le \overbrace{d(f_n(x), f_m(x))}^{\mathclap{\text{$(f_n)$ is Cauchy}}}
|
|
||||||
+ \underbrace{d(f_m(x), f(x))}_{\mathclap{\text{small for appropriate $m$}}}.
|
|
||||||
\]
|
|
||||||
|
|
||||||
$f$ is continuous by the uniform convergence theorem.
|
|
||||||
\end{subproof}
|
|
||||||
|
|
||||||
\begin{claim}
|
|
||||||
There exists a countable dense subset.
|
|
||||||
\end{claim}
|
|
|
@ -131,7 +131,5 @@
|
||||||
%\mathbin{\raisebox{1ex}{\scalebox{.7}{$\frown$}}}%
|
%\mathbin{\raisebox{1ex}{\scalebox{.7}{$\frown$}}}%
|
||||||
|
|
||||||
\DeclareMathOperator{\hght}{height}
|
\DeclareMathOperator{\hght}{height}
|
||||||
\DeclareMathOperator{\symdif}{\triangle}
|
|
||||||
\DeclareSimpleMathOperator{proj}
|
|
||||||
|
|
||||||
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
||||||
|
|
|
@ -28,7 +28,6 @@
|
||||||
\input{inputs/lecture_02}
|
\input{inputs/lecture_02}
|
||||||
\input{inputs/lecture_03}
|
\input{inputs/lecture_03}
|
||||||
\input{inputs/lecture_04}
|
\input{inputs/lecture_04}
|
||||||
\input{inputs/lecture_05}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue