Kuratowski-Ulam gist
This commit is contained in:
parent
9d601c2e62
commit
fbf52d882a
8 changed files with 105 additions and 53 deletions
|
@ -164,8 +164,10 @@
|
||||||
\]
|
\]
|
||||||
\end{notation}
|
\end{notation}
|
||||||
|
|
||||||
|
\gist{%
|
||||||
The following similar to Fubini,
|
The following similar to Fubini,
|
||||||
but for meager sets:
|
but for meager sets:
|
||||||
|
}{}
|
||||||
|
|
||||||
\begin{theorem}[Kuratowski-Ulam]
|
\begin{theorem}[Kuratowski-Ulam]
|
||||||
\yalabel{Kuratowski-Ulam}{Kuratowski-Ulam}{thm:kuratowskiulam}
|
\yalabel{Kuratowski-Ulam}{Kuratowski-Ulam}{thm:kuratowskiulam}
|
||||||
|
@ -193,6 +195,7 @@ but for meager sets:
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{refproof}{thm:kuratowskiulam}
|
\begin{refproof}{thm:kuratowskiulam}
|
||||||
|
\gist{
|
||||||
(ii) and (iii) are equivalent by passing to the complement.
|
(ii) and (iii) are equivalent by passing to the complement.
|
||||||
|
|
||||||
\begin{claim}%[1a]
|
\begin{claim}%[1a]
|
||||||
|
@ -286,16 +289,11 @@ but for meager sets:
|
||||||
$M_x$ is comeager
|
$M_x$ is comeager
|
||||||
as a countable intersection of comeager sets.
|
as a countable intersection of comeager sets.
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
}{}
|
||||||
|
|
||||||
|
|
||||||
% \phantom\qedhere
|
% \phantom\qedhere
|
||||||
% \end{refproof}
|
% \end{refproof}
|
||||||
% TODO fix claim numbers
|
% TODO fix claim numbers
|
||||||
|
|
||||||
\gist{%
|
|
||||||
\begin{remark}
|
|
||||||
Suppose that $A$ has the BP.
|
|
||||||
Then there is an open $U$ such that
|
|
||||||
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
|
|
||||||
Then $A = U \symdif M$.
|
|
||||||
\end{remark}
|
|
||||||
}{}
|
|
||||||
|
|
|
@ -1,8 +1,8 @@
|
||||||
\lecture{06}{2023-11-03}{}
|
\lecture{06}{2023-11-03}{}
|
||||||
|
\gist{%
|
||||||
% \begin{refproof}{thm:kuratowskiulam}
|
% \begin{refproof}{thm:kuratowskiulam}
|
||||||
\begin{enumerate}[(i)]
|
\begin{enumerate}[(i)]
|
||||||
\item Let $A$ be a set with the Baire Property.
|
\item Let $A$ be a set with the Baire property.
|
||||||
Write $A = U \symdif M$
|
Write $A = U \symdif M$
|
||||||
for $U$ open and $M$ meager.
|
for $U$ open and $M$ meager.
|
||||||
Then for all $x$,
|
Then for all $x$,
|
||||||
|
@ -51,8 +51,8 @@
|
||||||
Towards a contradiction suppose that $A$ is not meager.
|
Towards a contradiction suppose that $A$ is not meager.
|
||||||
Then $U$ is not meager.
|
Then $U$ is not meager.
|
||||||
Since $X \times Y$ is second countable,
|
Since $X \times Y$ is second countable,
|
||||||
we have that $A$ is a countable union of open rectangles.
|
we have that $U$ is a countable union of open rectangles.
|
||||||
At least one of them, say $G \times H \subseteq A$,
|
At least one of them, say $G \times H \subseteq U$,
|
||||||
is not meager.
|
is not meager.
|
||||||
By \yaref{thm:kuratowskiulam:c2},
|
By \yaref{thm:kuratowskiulam:c2},
|
||||||
both $G$ and $H$ are not meager.
|
both $G$ and $H$ are not meager.
|
||||||
|
@ -71,7 +71,59 @@
|
||||||
``$\implies$''
|
``$\implies$''
|
||||||
This is \yaref{thm:kuratowskiulam:c1b}.
|
This is \yaref{thm:kuratowskiulam:c1b}.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
}{%
|
||||||
|
\begin{itemize}
|
||||||
|
\item (ii) $\iff$ (iii): pass to complement.
|
||||||
|
\item $F \overset{\text{closed}}{\subseteq} X \times Y$ nwd.
|
||||||
|
$\implies \{x \in X : F_x \text{ nwd}\} $ comeager:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $W = F^c$ is open and dense, show that $\{x : W_x \text{ dense}\}$
|
||||||
|
is comeager.
|
||||||
|
\item $(V_n)$ enumeration of basis. Show that $U_n \coloneqq \{x : V_n \cap W_x \neq \emptyset\}$
|
||||||
|
is comeager for all $n$.
|
||||||
|
\item $U_n$ is open (projection of open) and dense ($W$ is dense, hence $W \cap ( U \times V_n) \neq \emptyset$ for $U$ open).
|
||||||
|
\end{itemize}
|
||||||
|
\item $F \subseteq X \times Y$ is nwd $\implies \{x \in X: F_x \text{ nwd}\}$ comeager.
|
||||||
|
(consider $\overline{F}$).
|
||||||
|
\item (ii) $\implies$:
|
||||||
|
$M \subseteq X \times Y$ meager $\implies \{x \in X: M_x \text{ meager}\}$ comeager
|
||||||
|
(write $M$ as ctbl. union of nwd.)
|
||||||
|
\item (i): If $A$ has the Baire Property,
|
||||||
|
then $A = U \symdif M$, $A_x = U_x \symdif M_x$,
|
||||||
|
$U_x$ open and $\{x : M_x \text{ meager}\}$ comeager
|
||||||
|
$\implies$ (i).
|
||||||
|
\item $P \subseteq X$, $Q \subseteq Y$ BP,
|
||||||
|
then $P \times Q$ meager $\iff$ $P$ or $Q$ meager.
|
||||||
|
\begin{itemize}
|
||||||
|
\item $\impliedby$ easy
|
||||||
|
\item $\implies$ Suppose $P \times Q$ meager, $P$ not meager.
|
||||||
|
$\emptyset\neq P \cap \underbrace{\{x : (P \times Q)_x \text{ meager} \}}_{\text{comeager}} \ni x$.
|
||||||
|
$(P \times Q)_x = Q$ is meager.
|
||||||
|
\end{itemize}
|
||||||
|
\item (ii) $\impliedby$:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $A$ BP, $\{x : A_x \text{ meager}\}$ comeager.
|
||||||
|
\item $A = U \symdif M$.
|
||||||
|
\item Suppose $A$ not meager $\leadsto$ $U$ not meager
|
||||||
|
$\leadsto \exists G \times H \subseteq U$ not meager.
|
||||||
|
\item $G$ and $H$ are not meager.
|
||||||
|
\item $\exists x_0 \in G \cap \underbrace{\{x: A_x \text{ meager } \land M_x \text{ meager}\}}_\text{comeager}$.
|
||||||
|
\item $H$ meager, as
|
||||||
|
\[
|
||||||
|
H \subseteq U_{x_0} \subseteq A_{x_0} \cup M_{x_0}.
|
||||||
|
\]
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
\gist{%
|
||||||
|
\begin{remark}
|
||||||
|
Suppose that $A$ has the BP.
|
||||||
|
Then there is an open $U$ such that
|
||||||
|
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
|
||||||
|
Then $A = U \symdif M$.
|
||||||
|
\end{remark}
|
||||||
|
}{}
|
||||||
|
|
||||||
\section{Borel sets} % TODO: fix chapters
|
\section{Borel sets} % TODO: fix chapters
|
||||||
|
|
||||||
|
|
|
@ -20,9 +20,6 @@
|
||||||
\end{remark}
|
\end{remark}
|
||||||
}{}
|
}{}
|
||||||
|
|
||||||
|
|
||||||
% TODO ANKI-MARKER
|
|
||||||
|
|
||||||
We will be studying projections to the first $d$ coordinates,
|
We will be studying projections to the first $d$ coordinates,
|
||||||
i.e.
|
i.e.
|
||||||
\[
|
\[
|
||||||
|
@ -49,6 +46,9 @@ Let $\pi_n\colon X \to (S^1)^n$ be the projection to the first $n$
|
||||||
coordinates.
|
coordinates.
|
||||||
|
|
||||||
|
|
||||||
|
% TODO ANKI-MARKER
|
||||||
|
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
\label{lem:lec20:1}
|
\label{lem:lec20:1}
|
||||||
Let $x,x' \in X$ with $\pi_n(x) = \pi_n(x')$
|
Let $x,x' \in X$ with $\pi_n(x) = \pi_n(x')$
|
||||||
|
|
|
@ -146,9 +146,7 @@ For this we define
|
||||||
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
|
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
|
||||||
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
|
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
|
||||||
\item Minimality:%
|
\item Minimality:%
|
||||||
\gist{%
|
\notexaminable{%
|
||||||
\footnote{This is not relevant for the exam.}
|
|
||||||
|
|
||||||
Let $\langle E_n : n < \omega \rangle$
|
Let $\langle E_n : n < \omega \rangle$
|
||||||
be an enumeration of a countable basis for $\mathbb{K}^I$.
|
be an enumeration of a countable basis for $\mathbb{K}^I$.
|
||||||
|
|
||||||
|
@ -165,11 +163,10 @@ For this we define
|
||||||
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
||||||
Since the flow is distal, it suffices to show
|
Since the flow is distal, it suffices to show
|
||||||
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
||||||
}{ Not relevant for the exam.}
|
}
|
||||||
|
|
||||||
\item The order of the flow is $\eta$:%
|
\item The order of the flow is $\eta$:%
|
||||||
\gist{%
|
\notexaminable{%
|
||||||
\footnote{This is not relevant for the exam.}
|
|
||||||
Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
||||||
Consider the flows we get from $(f_i)_{i < j}$
|
Consider the flows we get from $(f_i)_{i < j}$
|
||||||
resp.~$(f_i)_{i \le j}$
|
resp.~$(f_i)_{i \le j}$
|
||||||
|
@ -193,6 +190,6 @@ For this we define
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
Beleznay and Foreman show that this is open and dense.%
|
Beleznay and Foreman show that this is open and dense.%
|
||||||
% TODO similarities to the lemma used today
|
% TODO similarities to the lemma used today
|
||||||
}{ Not relevant for the exam.}
|
}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
|
@ -70,7 +70,8 @@
|
||||||
\begin{notation}
|
\begin{notation}
|
||||||
In this case we write $x = \ulim{\cU}_n x_n$.
|
In this case we write $x = \ulim{\cU}_n x_n$.
|
||||||
\end{notation}
|
\end{notation}
|
||||||
\begin{refproof}{lem:ultrafilterlimit}[sketch]
|
\begin{refproof}{lem:ultrafilterlimit}\footnote{The proof from the lecture only works
|
||||||
|
for metric spaces.}
|
||||||
Whenever we write $X = Y \cup Z$
|
Whenever we write $X = Y \cup Z$
|
||||||
we have $(\cU n) x_n \in Y$
|
we have $(\cU n) x_n \in Y$
|
||||||
or $(\cU n) x_n \in Z$.
|
or $(\cU n) x_n \in Z$.
|
||||||
|
@ -120,15 +121,14 @@ This gives $+ \colon \beta\N \times \beta\N \to \beta\N$.
|
||||||
|
|
||||||
This is not commutative,
|
This is not commutative,
|
||||||
but associative and $a \mapsto a + b$ is continuous
|
but associative and $a \mapsto a + b$ is continuous
|
||||||
for a fixed $b$.
|
for a fixed $b$,
|
||||||
This is called a left compact topological semigroup.
|
i.e.~it is a left compact topological semigroup.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Let $X$ be a compact Hausdorff space
|
Let $X$ be a compact Hausdorff space
|
||||||
and let $T \colon X \to X$ be continuous.%
|
and let $T \colon X \to X$ be continuous.%
|
||||||
\footnote{Note that this need not be a homeomorphism, i.e.~we only get a $\N$-action
|
\footnote{Note that this may not be a homeomorphism, i.e.~we only get a $\N$-action
|
||||||
but not a $\Z$-action.}
|
but not a $\Z$-action.}
|
||||||
|
|
||||||
For any $\cU \in \beta\N$, we define $T^{\cU}$ by
|
For any $\cU \in \beta\N$, we define $T^{\cU}$ by
|
||||||
|
|
|
@ -132,6 +132,12 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
||||||
% TODO general fact: continuous functions agreeing on a dense set
|
% TODO general fact: continuous functions agreeing on a dense set
|
||||||
% agree everywhere (fact section)
|
% agree everywhere (fact section)
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
\begin{trivial}+
|
||||||
|
More generally,
|
||||||
|
$\beta$ is a functor from the category of topological
|
||||||
|
spaces to the category of compact Hausdorff spaces.
|
||||||
|
It is left adjoint to the inclusion functor.
|
||||||
|
\end{trivial}
|
||||||
|
|
||||||
% RECAP
|
% RECAP
|
||||||
\gist{%
|
\gist{%
|
||||||
|
|
|
@ -84,11 +84,12 @@ with parameter $\alpha \in \R$, $1 \cdot x \coloneqq x + \alpha$.
|
||||||
\nr 4
|
\nr 4
|
||||||
|
|
||||||
% Examinable!
|
% Examinable!
|
||||||
|
% TODO THINK!
|
||||||
|
|
||||||
|
\gist{%
|
||||||
% RECAP
|
% RECAP
|
||||||
Let $X$ be a metrizable topological space.
|
Let $X$ be a metrizable topological space
|
||||||
|
and let $K(X) \coloneqq \{ K \subseteq X : K \text{ compact}\}$.
|
||||||
Let $K(X) \coloneqq \{ K \subseteq X : \text{ compact}\}$.
|
|
||||||
|
|
||||||
The Vietoris topology has a basis given by
|
The Vietoris topology has a basis given by
|
||||||
$\{K \subseteq U\}$, $U$ open (type 1)
|
$\{K \subseteq U\}$, $U$ open (type 1)
|
||||||
|
@ -103,19 +104,21 @@ $\max_{a \in A} d(a,B)$.
|
||||||
On previous sheets, we checked that $d_H$ is a metric.
|
On previous sheets, we checked that $d_H$ is a metric.
|
||||||
If $X$ is separable, then so is $K(X)$.
|
If $X$ is separable, then so is $K(X)$.
|
||||||
% END RECAP
|
% END RECAP
|
||||||
|
}{}
|
||||||
|
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
|
\label{fact:s12e4}
|
||||||
Let $(X,d)$ be a complete metric space.
|
Let $(X,d)$ be a complete metric space.
|
||||||
Then so is $(K(X), d_H)$.
|
Then so is $(K(X), d_H)$.
|
||||||
\end{fact}
|
\end{fact}
|
||||||
\begin{proof}
|
\begin{refproof}{fact:s12e4}
|
||||||
We need to show that $(K(X), d_H)$ is complete.
|
We need to show that $(K(X), d_H)$ is complete.
|
||||||
|
|
||||||
Let $(K_n)_{ n< \omega}$ be Cauchy in $(K(X), d_H)$.
|
Let $(K_n)_{ n< \omega}$ be Cauchy in $(K(X), d_H)$.
|
||||||
Wlog.~$K_n \neq \emptyset$ for all $n$.
|
Wlog.~$K_n \neq \emptyset$ for all $n$.
|
||||||
|
|
||||||
Let $K = \{ x \in X : \forall x \in U \overset{\text{open}}{\subseteq} X.~
|
Let $K = \{ x \in X : \forall x \in U \overset{\text{open}}{\subseteq} X.~
|
||||||
\text{ $X$ intersects $K_n$ for infinitely many $n$}\}$.
|
\text{ $U \cap K_n \neq \emptyset$ for infinitely many $n$}\}$.
|
||||||
|
|
||||||
Equivalently,
|
Equivalently,
|
||||||
$K = \{x : x \text{ is a cluster point of some subsequence $(x_n)$ with $x_n \in K_n$ for all $K_n$}\}$.
|
$K = \{x : x \text{ is a cluster point of some subsequence $(x_n)$ with $x_n \in K_n$ for all $K_n$}\}$.
|
||||||
|
@ -123,12 +126,12 @@ Then so is $(K(X), d_H)$.
|
||||||
(A cluster point is a limit of some subsequence).
|
(A cluster point is a limit of some subsequence).
|
||||||
|
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
|
\label{fact:s12e4:c1}
|
||||||
$K_n \to K$.
|
$K_n \to K$.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{subproof}
|
\begin{refproof}{fact:s12e4:c1}
|
||||||
Note that $K$ is closed (the complement is open).
|
Note that $K$ is closed (the complement is open).
|
||||||
|
|
||||||
|
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
$K \neq \emptyset$.
|
$K \neq \emptyset$.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
|
@ -159,7 +162,7 @@ Then so is $(K(X), d_H)$.
|
||||||
space, it is complete.
|
space, it is complete.
|
||||||
|
|
||||||
So it suffices to show that $K$ is totally bounded.
|
So it suffices to show that $K$ is totally bounded.
|
||||||
Let $\epsilon > 0$
|
Let $\epsilon > 0$.
|
||||||
Take $N$ such that $d_H(K_i,K_j) < \epsilon$
|
Take $N$ such that $d_H(K_i,K_j) < \epsilon$
|
||||||
for all $i,j \ge N$.
|
for all $i,j \ge N$.
|
||||||
|
|
||||||
|
@ -200,9 +203,8 @@ Then so is $(K(X), d_H)$.
|
||||||
To do this, construct a sequence of $y_{n_i} \in K_{n_i}$
|
To do this, construct a sequence of $y_{n_i} \in K_{n_i}$
|
||||||
starting with $y$ such that $d(y_{n_i}, y_{n_{i+1}}) < \frac{\epsilon}{2^{i+2}}$.
|
starting with $y$ such that $d(y_{n_i}, y_{n_{i+1}}) < \frac{\epsilon}{2^{i+2}}$.
|
||||||
(same trick as before).
|
(same trick as before).
|
||||||
\end{subproof}
|
\end{refproof}
|
||||||
|
\end{refproof}
|
||||||
\end{proof}
|
|
||||||
|
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
If $X$ is compact metrisable,
|
If $X$ is compact metrisable,
|
||||||
|
@ -223,9 +225,3 @@ Then so is $(K(X), d_H)$.
|
||||||
|
|
||||||
|
|
||||||
% TODO complete and totally bounded Sutherland metric and topological spaces
|
% TODO complete and totally bounded Sutherland metric and topological spaces
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -2,7 +2,7 @@
|
||||||
\tutorial{15}{2024-01-31}{Additions}
|
\tutorial{15}{2024-01-31}{Additions}
|
||||||
|
|
||||||
The following is not relevant for the exam,
|
The following is not relevant for the exam,
|
||||||
but gives a more general picture.
|
but aims to give a more general picture.
|
||||||
|
|
||||||
Let $X$ be a topological space
|
Let $X$ be a topological space
|
||||||
and let $\cF$ be a filter on $ X$.
|
and let $\cF$ be a filter on $ X$.
|
||||||
|
@ -21,6 +21,7 @@ is contained in $\cF$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
|
\label{fact:compactiffufconv}
|
||||||
$X$ is (quasi-) compact
|
$X$ is (quasi-) compact
|
||||||
iff every ultrafilter converges.
|
iff every ultrafilter converges.
|
||||||
\end{fact}
|
\end{fact}
|
||||||
|
@ -29,7 +30,7 @@ is contained in $\cF$.
|
||||||
Let $\cU$ be an ultrafilter.
|
Let $\cU$ be an ultrafilter.
|
||||||
Consider the family $\cV = \{\overline{A} : A \in \cU\}$
|
Consider the family $\cV = \{\overline{A} : A \in \cU\}$
|
||||||
of closed sets.
|
of closed sets.
|
||||||
By the FIP we geht that there exist
|
By the FIP we get that there exist
|
||||||
$c \in X$ such that $c \in \overline{A}$ for all $A \in \cU$.
|
$c \in X$ such that $c \in \overline{A}$ for all $A \in \cU$.
|
||||||
Let $N$ be an open neighbourhood of $c$.
|
Let $N$ be an open neighbourhood of $c$.
|
||||||
If $N^c \in \cU$, then $c \in N^c \lightning$
|
If $N^c \in \cU$, then $c \in N^c \lightning$
|
||||||
|
@ -69,17 +70,19 @@ so is $f(\cB)$.
|
||||||
\end{fact}
|
\end{fact}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Consider $(f,g)^{-1}(\Delta) \supseteq A$.
|
Consider $(f,g)^{-1}(\Delta) \supseteq A$.
|
||||||
|
The RHS is a dense closed set, i.e.~the entire space.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
We can uniquely extend $f\colon X \to Y$ continuous
|
We can uniquely extend a continuous $f\colon X \to Y$
|
||||||
to a continuous $\overline{f}\colon \beta X \to Y$
|
to a continuous $\overline{f}\colon \beta X \to Y$
|
||||||
by setting $\overline{f}(\cU) \coloneqq \lim_\cU f$.
|
by setting $\overline{f}(\cU) \coloneqq \lim_\cU f$.
|
||||||
|
|
||||||
Let $V$ be an open neighbourhood of $Y$ in $\overline{f}\left( U) \right) $.
|
% Let $V$ be an open neighbourhood of $y \in \overline{f}\left( U \right)$.
|
||||||
Consider $f^{-1}(V)$.
|
% Consider $f^{-1}(V)$.
|
||||||
Consider the basic open set
|
% Then
|
||||||
\[
|
% \[
|
||||||
\{\cF \in \beta\N : \cF \ni f^{-1}(V)\}.
|
% \{\cF \in \beta\N : \cF \ni f^{-1}(V)\}
|
||||||
\]
|
% \]
|
||||||
|
% is a basic open set.
|
||||||
|
|
||||||
\todo{I missed the last 5 minutes}
|
\todo{I missed the last 5 minutes}
|
||||||
|
|
Loading…
Reference in a new issue