This commit is contained in:
parent
e59e97ca03
commit
f7f9d7d638
3 changed files with 25 additions and 22 deletions
|
@ -173,10 +173,8 @@ i.e.~we want to associate a tree $T \subseteq \N^{<\N}$}%
|
||||||
Let \vocab{$\Tr$} $ \coloneqq \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\N}$.
|
Let \vocab{$\Tr$} $ \coloneqq \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\N}$.
|
||||||
|
|
||||||
\begin{observe}
|
\begin{observe}
|
||||||
\[
|
$\Tr \subseteq {2^{\N}}^{<\N}$ is closed
|
||||||
\Tr \subseteq {2^{\N}}^{<\N}
|
(where we take the topology of the Cantor space).
|
||||||
\]
|
|
||||||
is closed (where we take the topology of the Cantor space).
|
|
||||||
\end{observe}
|
\end{observe}
|
||||||
\gist{%
|
\gist{%
|
||||||
Indeed, for any $ s \in \N^{<\N}$
|
Indeed, for any $ s \in \N^{<\N}$
|
||||||
|
|
|
@ -33,7 +33,6 @@ with $(f^{-1}(\{1\}), <)$.
|
||||||
and $[\alpha_i, \alpha_{i+1})$ to $(i,i+1)$.
|
and $[\alpha_i, \alpha_{i+1})$ to $(i,i+1)$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
% TODO ANKI-MARKER
|
|
||||||
|
|
||||||
\begin{definition}[\vocab{Kleene-Brouwer ordering}]
|
\begin{definition}[\vocab{Kleene-Brouwer ordering}]
|
||||||
Let $(A,<)$ be a linear order and $A$ countable.
|
Let $(A,<)$ be a linear order and $A$ countable.
|
||||||
|
@ -58,25 +57,30 @@ with $(f^{-1}(\{1\}), <)$.
|
||||||
$(T, <_{KB}\defon{T})$ is well ordered.
|
$(T, <_{KB}\defon{T})$ is well ordered.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
If $T$ is ill-founded and $x \in [T]$,
|
\gist{%
|
||||||
then for all $n$, we have $x\defon{n+1} <_{KB} x\defon{n}$.
|
If $T$ is ill-founded and $x \in [T]$,
|
||||||
Thus $(T, <_{KB}\defon{T})$ is not well ordered.
|
then for all $n$, we have $x\defon{n+1} <_{KB} x\defon{n}$.
|
||||||
|
Thus $(T, <_{KB}\defon{T})$ is not well ordered.
|
||||||
|
|
||||||
Conversely, let $<\defon{KB}$ be not a well-ordering
|
Conversely, let $<\defon{KB}$ be not a well-ordering
|
||||||
on $T$.
|
on $T$.
|
||||||
Let $s_0 >_{KB} s_1 >_{KB} s_2 >_{KB} \ldots$
|
Let $s_0 >_{KB} s_1 >_{KB} s_2 >_{KB} \ldots$
|
||||||
be an infinite descending chain.
|
be an infinite descending chain.
|
||||||
We have that $s_0(0) \ge s_1(0) \ge s_2(0) \ge \ldots$
|
We have that $s_0(0) \ge s_1(0) \ge s_2(0) \ge \ldots$
|
||||||
stabilizes for $n > n_0$.
|
stabilizes for $n > n_0$.
|
||||||
Let $a_0 \coloneqq s_{n_0}(0)$.
|
Let $a_0 \coloneqq s_{n_0}(0)$.
|
||||||
Now for $n \ge n_0$ we have that $s_n(0)$ is constant,
|
Now for $n \ge n_0$ we have that $s_n(0)$ is constant,
|
||||||
hence for $n > n_0$ the value $s_{n}(1)$ must be defined.
|
hence for $n > n_0$ the value $s_{n}(1)$ must be defined.
|
||||||
Thus there is $n_1 \ge n_0$ such that $s_n(1)$
|
Thus there is $n_1 \ge n_0$ such that $s_n(1)$
|
||||||
is constant for all $n \ge n_1$.
|
is constant for all $n \ge n_1$.
|
||||||
Let $a_1 \coloneqq s_{n_1}(1)$
|
Let $a_1 \coloneqq s_{n_1}(1)$
|
||||||
and so on.
|
and so on.
|
||||||
Then $(a_0,a_1,a_2, \ldots) \in [T]$.
|
Then $(a_0,a_1,a_2, \ldots) \in [T]$.
|
||||||
|
}{easy}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
% TODO ANKI-MARKER
|
||||||
|
|
||||||
\begin{theorem}[Lusin-Sierpinski]
|
\begin{theorem}[Lusin-Sierpinski]
|
||||||
The set $\LO \setminus \WO$
|
The set $\LO \setminus \WO$
|
||||||
(resp.~$2^{\Q} \setminus \WO$)
|
(resp.~$2^{\Q} \setminus \WO$)
|
||||||
|
|
|
@ -4,6 +4,7 @@
|
||||||
% TODO gist info
|
% TODO gist info
|
||||||
% TODO link to long version (provide link to main document)
|
% TODO link to long version (provide link to main document)
|
||||||
|
|
||||||
|
% TODO \phantomsection to cross link
|
||||||
\newcommand{\gist}[2]{%
|
\newcommand{\gist}[2]{%
|
||||||
\ifcsname EnableGist\endcsname%
|
\ifcsname EnableGist\endcsname%
|
||||||
#2%
|
#2%
|
||||||
|
|
Loading…
Reference in a new issue