fixed some typos; currying
This commit is contained in:
parent
c9212aefdd
commit
f4d64527c4
5 changed files with 16 additions and 16 deletions
|
@ -185,11 +185,11 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
||||||
\begin{definition}[Our favourite Polish spaces]
|
\begin{definition}[Our favourite Polish spaces]
|
||||||
\leavevmode
|
\leavevmode
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $2^{\omega}$ is called the \vocab{Cantor set}.
|
\item $2^{\N}$ is called the \vocab{Cantor set}.
|
||||||
(Consider $2$ with the discrete topology)
|
(Consider $2$ with the discrete topology)
|
||||||
\item $\omega^{\omega}$ is called the \vocab{Baire space}.
|
\item $\cN \coloneqq \N^{\N}$ is called the \vocab{Baire space}.
|
||||||
($\omega$ with descrete topology)
|
($\N$ with descrete topology)
|
||||||
\item $[0,1]^{\omega}$ is called the \vocab{Hilbert cube}.
|
\item $\mathbb{H} \coloneqq [0,1]^{\N}$ is called the \vocab{Hilbert cube}.
|
||||||
($[0,1] \subseteq \R$ with the usual topology)
|
($[0,1] \subseteq \R$ with the usual topology)
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
|
@ -78,18 +78,17 @@ where $X$ is a metrizable, usually second countable space.
|
||||||
we also have
|
we also have
|
||||||
$A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$.
|
$A = \bigcup_n A_n'$ with $A'_n \in \Pi^0_{\xi_n}(X)$.
|
||||||
|
|
||||||
We construct a $(2^\omega)^\omega \cong 2^\omega$-universal set
|
We construct a $(2^{\omega \times \omega}) \cong 2^\omega$-universal set
|
||||||
for $\Sigma^0_\xi(X)$.
|
for $\Sigma^0_\xi(X)$.
|
||||||
For $(y_n) \in (2^\omega)^\omega$
|
For $(y_{m,n}) \in (2^{\omega \times \omega})$
|
||||||
and $x \in X$
|
and $x \in X$
|
||||||
we set $((y_n), x) \in \cU$
|
we set $((y_{m,n}), x) \in \cU$
|
||||||
iff $\exists n.~(y_n, x) \in U_{\xi_n}$,
|
iff $\exists n.~((y_{m,n})_{m < \omega}, x) \in U_{\xi_n}$,
|
||||||
i.e.~iff $\exists n.~x \in (U_{\xi_n})_{y_n}$.
|
i.e.~iff $\exists n.~x \in (U_{\xi_n})_{(y_{m,n})_{m < \omega}}$.
|
||||||
|
|
||||||
Let $A \in \Sigma^0_\xi(X)$.
|
Let $A \in \Sigma^0_\xi(X)$.
|
||||||
Then $A = \bigcup_{n} B_n$ for some $B_n \in \Pi^0_{\xi_n}(X)$.
|
Then $A = \bigcup_{n} B_n$ for some $B_n \in \Pi^0_{\xi_n}(X)$.
|
||||||
% TODO
|
Furthermore $\cU \in \Sigma^0_{\xi}((2^{\omega \times \omega} \times X)$.
|
||||||
Furthermore $\cU \in \Sigma^0_{\xi}((2^\omega)^\omega \times X)$.
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
Since $2^{\omega}$ embeds
|
Since $2^{\omega}$ embeds
|
||||||
|
|
|
@ -34,7 +34,8 @@ we need the following definition:
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
\label{lem:lusinsephelp}
|
\label{lem:lusinsephelp}
|
||||||
If $P = \bigcup_{m < \omega} P_m$, $Q = \bigcup_{n < \omega} Q_n$ are such that
|
If $P = \bigcup_{m < \omega} P_m$, $Q = \bigcup_{n < \omega} Q_n$ are such that
|
||||||
for any $m, n$ the sets $P_m$ and $Q_n$ are Borel separable.
|
for any $m, n$ the sets $P_m$ and $Q_n$ are Borel separable,
|
||||||
|
then $P$ and $Q$ are Borel separable.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
For all $m, n$ pick $R_{m,n}$ Borel,
|
For all $m, n$ pick $R_{m,n}$ Borel,
|
||||||
|
@ -42,7 +43,7 @@ we need the following definition:
|
||||||
and $Q_n \cap R_{m,n} = \emptyset$.
|
and $Q_n \cap R_{m,n} = \emptyset$.
|
||||||
Then $R = \bigcup_m \bigcap_n R_{m,n}$
|
Then $R = \bigcup_m \bigcap_n R_{m,n}$
|
||||||
has the desired property
|
has the desired property
|
||||||
that $R \subseteq R$ and $R \cap Q = \emptyset$.
|
that $P \subseteq R$ and $R \cap Q = \emptyset$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{notation}
|
\begin{notation}
|
||||||
|
@ -60,7 +61,7 @@ we need the following definition:
|
||||||
|
|
||||||
Write $A_s \coloneqq f(\cN_s)$ and $B_s \coloneqq g(\cN_s)$.
|
Write $A_s \coloneqq f(\cN_s)$ and $B_s \coloneqq g(\cN_s)$.
|
||||||
Note that $A_s = \bigcup_m A_{s\concat m}$
|
Note that $A_s = \bigcup_m A_{s\concat m}$
|
||||||
and $B_ns = \bigcup_{n < \omega} B_{s\concat n}$.
|
and $B_s = \bigcup_{n < \omega} B_{s\concat n}$.
|
||||||
|
|
||||||
In particular
|
In particular
|
||||||
$A = \bigcup_{m < \omega} A_{\underbrace{\langle m \rangle}_{\in \omega^1}}$
|
$A = \bigcup_{m < \omega} A_{\underbrace{\langle m \rangle}_{\in \omega^1}}$
|
||||||
|
|
|
@ -183,7 +183,7 @@ i.e.}{}
|
||||||
Let $X$ be Polish and $C \subseteq X$ coanalytic.
|
Let $X$ be Polish and $C \subseteq X$ coanalytic.
|
||||||
Then $\phi\colon C \to \Ord$
|
Then $\phi\colon C \to \Ord$
|
||||||
is a \vocab[Rank!$\Pi^1_1$-rank]{$\Pi^1_1$-rank}
|
is a \vocab[Rank!$\Pi^1_1$-rank]{$\Pi^1_1$-rank}
|
||||||
provided that $\le^\ast$ and $<^\ast$ are coanalytic subsets of $X \times X$,
|
provided that $\le^\ast_\phi$ and $<^\ast_\phi$ are coanalytic subsets of $X \times X$,
|
||||||
where
|
where
|
||||||
$x \le^\ast_{\phi} y$
|
$x \le^\ast_{\phi} y$
|
||||||
iff
|
iff
|
||||||
|
|
|
@ -55,7 +55,7 @@
|
||||||
then $\xi = \alpha$
|
then $\xi = \alpha$
|
||||||
and
|
and
|
||||||
\[
|
\[
|
||||||
E_\xi = E_\alpha = \bigcup_{\eta < \alpha}
|
E_\xi = E_\alpha = \bigcup_{\eta < \alpha} E_\eta
|
||||||
\]
|
\]
|
||||||
is a countable union of Borel sets by the previous case.
|
is a countable union of Borel sets by the previous case.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
Loading…
Reference in a new issue