removed junk
This commit is contained in:
parent
c1316d8bb5
commit
f0bab3e1ac
1 changed files with 0 additions and 223 deletions
223
+
223
+
|
@ -1,223 +0,0 @@
|
||||||
\subsection{Sheet 7}
|
|
||||||
|
|
||||||
\tutorial{08}{2023-12-05}{}
|
|
||||||
% 17 / 20
|
|
||||||
\nr 1
|
|
||||||
\begin{itemize}
|
|
||||||
\item For $\xi = 1$ this holds by the definition of the
|
|
||||||
subspace topology.
|
|
||||||
|
|
||||||
We now use transfinite induction, to show that
|
|
||||||
the statement holds for all $\xi$.
|
|
||||||
Suppose that $\Sigma^0_{\zeta}(Y)$ and $\Pi^0_{\zeta}(Y)$
|
|
||||||
are as claimed for all $\zeta < \xi$.
|
|
||||||
|
|
||||||
Then
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
\Sigma^0_\xi(Y) &=& \{\bigcup_{n < \omega} A_n : A_n \in \Pi^0_{\alpha_n}(Y), \alpha_n < \xi\}\\
|
|
||||||
&=& \{\bigcup_{n < \omega} (A_n \cap Y) : A_n \in \Pi^0_{\alpha_n}(X), \alpha_n < \xi\}\\
|
|
||||||
&=& \{Y \cap \bigcup_{n < \omega} A_n : A_n \in \Pi^0_{\alpha_n}(X), \alpha_n < \xi\}\\
|
|
||||||
&=& \{Y \cap A : A \in \Sigma^0_{\xi}(X)\}.
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
and
|
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
|
||||||
\Pi^0_\xi(Y) &=& \lnot \Sigma^0_\xi(Y)\\
|
|
||||||
&=& \{Y \setminus A : A \in \Sigma^0_\xi(Y)\}\\
|
|
||||||
&=& \{Y \setminus (A \cap Y) : A \in \Sigma^0_\xi(X)\}\\
|
|
||||||
&=& \{Y \cap (X \setminus A) : A \in \Sigma^0_\xi(X)\}\\
|
|
||||||
&=& \{Y \cap A : A \in \Pi^0_\xi(X)\}.
|
|
||||||
\end{IEEEeqnarray*}
|
|
||||||
\item Let $V \in \cB(Y)$.
|
|
||||||
|
|
||||||
We show that $f^{-1}(V) \in \cB(Y)$,
|
|
||||||
by induction on the minimal $\xi$ such that $V \in \Sigma_\xi^0$.
|
|
||||||
For $\xi = 0$ this is clear.
|
|
||||||
Suppose that we have already shown $f^{-1}(V') \in \cB(Y)$
|
|
||||||
for all $V' \in \Sigma^0_\zeta$, $\zeta < \xi$.
|
|
||||||
Then $f^{-1}(Y \setminus V') = X \setminus f^{-1}(V') \in \cB(V)$,
|
|
||||||
since complements of Borel sets are Borel.
|
|
||||||
In particular, this also holds for $\Pi^0_\zeta$ sets
|
|
||||||
and $\zeta < \xi$.
|
|
||||||
Let $V \in \Sigma^0_\xi$.
|
|
||||||
Then $V = \bigcap_{n} V_n$ for some $V_n \in \Pi^{0}_{\alpha_n}$,
|
|
||||||
$\alpha_n < \xi$.
|
|
||||||
In particular $f^{-1}(V) = \bigcup_n f^{-1}(V_n) \in \cB(X)$.
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
\nr 2
|
|
||||||
|
|
||||||
|
|
||||||
Recall \autoref{thm:analytic}.
|
|
||||||
|
|
||||||
Let $(A_i)_{i<\omega}$ be analytic subsets of a Polish space $X$.
|
|
||||||
Then there exists Polish spaces $Y_i$ and $f_i\colon Y_i \to X$
|
|
||||||
continuous such that $f_i(B_i) = A_i$
|
|
||||||
for some $B_i \in \cB(Y_i)$.
|
|
||||||
|
|
||||||
\begin{itemize}
|
|
||||||
\item $\bigcup_i A_i$ is analytic:
|
|
||||||
Consider the Polish space $Y \coloneqq \coprod_{i < \omega} Y_i$
|
|
||||||
and $f \coloneqq \coprod_i f_i$, i.e.~
|
|
||||||
$Y_i \ni y \mapsto f_i(y)$.
|
|
||||||
$f$ is continuous,
|
|
||||||
$\coprod_{i < \omega} B_i \in \cB(Y)$
|
|
||||||
and
|
|
||||||
\[f(\coprod_{i < \omega} B_i) = \bigcup_i A_i.\]
|
|
||||||
\item $\bigcap_i A_i$ is $\Sigma^1_1$:
|
|
||||||
% Let $Y_i$ be Polish such that $f_i(Y_i) = A_i$.
|
|
||||||
% Let $Y \coloneqq \coprod Y_i$, $f = \coprod f_i$ and $Z = \prod Y_i$.
|
|
||||||
% Note that $Y$ and $Z$ are Polish.
|
|
||||||
% We can embed $Z$ into $Y^{\N}$.
|
|
||||||
%
|
|
||||||
% Define a tree $T$ on $Y$ as follows:
|
|
||||||
% $(y_0, \ldots, y_n) \in T$ iff
|
|
||||||
% \begin{itemize}
|
|
||||||
% \item $\forall 0 \le i \le n.~ y_i \in Y_i$ and
|
|
||||||
% \item $\forall i,j .~ f(y_i) = f(y_j)$.
|
|
||||||
% \end{itemize}
|
|
||||||
%
|
|
||||||
% Then $[T]$ consists of sequences $y = (y_n)$
|
|
||||||
% such that $\forall j \in \N.~f(y) \in \im (f_j)$,
|
|
||||||
% so $\forall y \in [T].~f(y) \in \bigcap_{i \in \N} \im(f_i) = \bigcap_{i \in \N} A_i$.
|
|
||||||
% $[T] \subseteq i(Z) \subseteq Y^{\N}$,
|
|
||||||
% and $[T]$ is closed.
|
|
||||||
%
|
|
||||||
%
|
|
||||||
% Other solution:
|
|
||||||
Let $Z = \prod Y_i$
|
|
||||||
and let $D \subseteq Z$
|
|
||||||
be defined by
|
|
||||||
\[
|
|
||||||
D \coloneqq \{(y_n) : f_i(y_i) = f_j(y_j) ~ \forall i,j\}.
|
|
||||||
\]
|
|
||||||
$D$ is closed,
|
|
||||||
at it is the preimage of the diagonal
|
|
||||||
under $Z \xrightarrow{(f_0,f_1,\ldots)} X^{\N}$.
|
|
||||||
Then $\bigcap A_i$ is the image of $D$
|
|
||||||
under $Z \xrightarrow{(y_n) \mapsto f_0(y_0)} X$.
|
|
||||||
|
|
||||||
\paragraph{Other solution}
|
|
||||||
|
|
||||||
Let $F_n \subseteq X \times \cN$ be closed,
|
|
||||||
and $C \subseteq X \times \cN^{\N}$ defined by
|
|
||||||
\[
|
|
||||||
C \coloneqq \{(x,(y^{(n)}) ) : \forall n.~(x, y^{(n)}) \in F_n\}.
|
|
||||||
\]
|
|
||||||
$C$ is closed
|
|
||||||
and $\bigcap A_i = \proj_X(C)$.
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
\nr 3
|
|
||||||
\todo{Wait for mail}
|
|
||||||
\todo{Find a countable clopen base}
|
|
||||||
|
|
||||||
\begin{itemize}
|
|
||||||
\item We use the same construction as in exercise 2 (a)
|
|
||||||
on sheet 6.
|
|
||||||
Let $A \subseteq X$ be analytic,
|
|
||||||
i.e.~there exists a Polish space $Y$ and $f\colon Y \to X$ Borel
|
|
||||||
with $f(Y) = X$.
|
|
||||||
Then $f$ is still Borel with respect to the
|
|
||||||
new topology, since Borel sets are preserved
|
|
||||||
and by exercise 1 (b).
|
|
||||||
% Let $(B_i)_{i < \omega}$ be a countable basis of $(X,\tau)$.
|
|
||||||
% By a theorem from the lecture, there exists Polish
|
|
||||||
% topologies $\cT_i$ such that $B_i$ is clopen wrt.~$\cT_i$
|
|
||||||
% and $\cB(\cT_i) = \cB(\tau)$.
|
|
||||||
% By a lemma from the lecture,
|
|
||||||
% $\tau' \coloneqq \bigcup_i \cT_i$
|
|
||||||
% is Polish as well and $\cB(\tau') = \cB(\tau)$.
|
|
||||||
% \todo{TODO: Basis}
|
|
||||||
\item Suppose that there exist no disjoint clopen sets $U_0,U_1$,
|
|
||||||
such that $W \cap U_0$ and $W \cap U_1$ are uncountable.
|
|
||||||
|
|
||||||
Let $W_0 \coloneqq W$
|
|
||||||
Then there exist disjoint clopen sets $C_i^{(0)}$
|
|
||||||
such that $W_0 \subseteq \bigcup_{i < \omega} C_i^{(0)}$
|
|
||||||
and $\diam(C_i) < 1$,
|
|
||||||
since $X$ is zero-dimensional.
|
|
||||||
|
|
||||||
By assumption, exactly one of the $C_i^{(0)}$ has
|
|
||||||
uncountable intersection with $W_0$.
|
|
||||||
Let $i_0$ be such that $W_0 \cap C_{i_0}^{(0)}$ is uncountable
|
|
||||||
and set $W_1 \coloneqq W_0 \cap C_{i_0}^{(0)}$.
|
|
||||||
Note that $W_0 \setminus W_1 = \bigcup_{i \neq i_0} C_i^{(0)}$ is countable.
|
|
||||||
|
|
||||||
Let us recursively continue this construction:
|
|
||||||
Suppose that $W_n$ uncountable has been chosen.
|
|
||||||
Then choose $C_{i}^{(n)}$ clopen,
|
|
||||||
disjoint with diameter $\le \frac{1}{n}$
|
|
||||||
such that $W_n \subseteq \bigcup_{i} C_i^{(n)}$
|
|
||||||
and let $i_n$ be the unique index
|
|
||||||
such that $W_n \cap C_{i_n}^{(n)}$ is uncountable.
|
|
||||||
|
|
||||||
Since $\diam(C_{i_n}^{(n)}) \xrightarrow{n \to \infty} 0$
|
|
||||||
and the $C_{i_n}^{(n)}$ are closed,
|
|
||||||
we get that $\bigcap_n C_{i_n}^{(n)}$
|
|
||||||
contains exactly one point. Let that point be $x$.
|
|
||||||
|
|
||||||
However then
|
|
||||||
\[
|
|
||||||
W = \left(\bigcup_{n < \omega} \bigcup_{i \neq i_n} (C_{i}^{(n)} \cap W)\right)
|
|
||||||
\cup \bigcap_{n} (W \cap C_{i_n}^{(n)})
|
|
||||||
= \left(\bigcup_{n < \omega} \bigcup_{i \neq i_n} (C_{i}^{(n)} \cap W)\right) \cup \{x\}
|
|
||||||
\]
|
|
||||||
is countable as a countable union of countable sets $\lightning$.
|
|
||||||
|
|
||||||
\item Consider a finer topology $\tau'$ on $X$ such that $(X, \tau')$ is zero dimensional
|
|
||||||
as in the first part.
|
|
||||||
Clearly $f$ is also continuous with respect to the new topology,
|
|
||||||
so we may assume that $X$ is zero dimensional.
|
|
||||||
|
|
||||||
Let $W \subseteq X$ be such that $f\defon{W}$ is injective
|
|
||||||
and $f(W) = f(X)$ (this exists by the axiom of choice).
|
|
||||||
Since $f(X)$ is uncountable, so is $W$.
|
|
||||||
By the second point, there exist disjoint clopen sets
|
|
||||||
$U_0, U_1$, such that $W \cap U_0$ and $W\cap U_1$
|
|
||||||
are uncountable.
|
|
||||||
Inductively construct $U_s$ for $s \in 2^{<\omega}$
|
|
||||||
as follows:
|
|
||||||
Suppose that $U_{s}$ has already been chosen.
|
|
||||||
Then let $U_{s\concat 0}, U_{s\concat 1} \subseteq U_s$
|
|
||||||
be disjoint clopen such that $U_{s\concat 1} \cap W$
|
|
||||||
and $U_{s\concat 0} \cap W$ are uncountable.
|
|
||||||
Such sets exist, since $ U_s \cap W$ is uncountable
|
|
||||||
and $U_s$ is a zero dimensional space with the subspace topology.
|
|
||||||
And since $U_s$ is clopen, we have that a subset of $U_s$ is clopen
|
|
||||||
in $U_s$ iff it is clopen in $X$.
|
|
||||||
|
|
||||||
Clearly this defines a Cantor scheme.
|
|
||||||
\item \todo{TODO}
|
|
||||||
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
|
|
||||||
\nr 4
|
|
||||||
|
|
||||||
Proof of Schröder-Bernstein:
|
|
||||||
|
|
||||||
Let $X_0 \coloneqq X$, $Y_0 \coloneqq Y$
|
|
||||||
and define $X_{i+1} \coloneqq g(Y_i)$, $Y_{i+1 } \coloneqq g(X_i)$.
|
|
||||||
We have $X_{i+1} \subseteq X_i$ and similarly for $Y_i$.
|
|
||||||
$f$ and $g$ are bijections between
|
|
||||||
$X_\omega \coloneqq \bigcap X_i$ and $Y_\omega \coloneqq \bigcap Y_i$.
|
|
||||||
|
|
||||||
|
|
||||||
%\resizebox{\textwidth}{!}{%
|
|
||||||
% https://q.uiver.app/#q=WzAsMTYsWzAsMCwiWCBcXHNldG1pbnVzIFhfXFxvbWVnYSA9Il0sWzAsMSwiWVxcc2V0bWludXMgWV9cXG9tZWdhID0iXSxbMSwwLCIoWF8wIFxcc2V0bWludXMgWF8xKSJdLFsxLDEsIihZXzAgXFxzZXRtaW51cyBZXzEpIl0sWzMsMSwiKFlfMCBcXHNldG1pbnVzIFlfMSkiXSxbNSwxLCIoWV8wIFxcc2V0bWludXMgWV8xKSJdLFszLDAsIihYXzAgXFxzZXRtaW51cyBYXzEpIl0sWzUsMCwiKFhfMCBcXHNldG1pbnVzIFhfMSkiXSxbNiwwLCJcXGNkb3RzIl0sWzYsMSwiXFxjZG90cyJdLFs0LDAsIlxcY3VwIl0sWzQsMSwiXFxjdXAiXSxbNywxXSxbNywwXSxbMiwwLCJcXGN1cCJdLFsyLDEsIlxcY3VwIl0sWzIsNCwiZiIsMix7ImxhYmVsX3Bvc2l0aW9uIjo3MH1dLFszLDYsImciLDAseyJsYWJlbF9wb3NpdGlvbiI6MTB9XSxbNywxMiwiZiIsMCx7ImxhYmVsX3Bvc2l0aW9uIjo4MH1dLFs1LDEzLCJnIiwwLHsibGFiZWxfcG9zaXRpb24iOjEwfV1d
|
|
||||||
\[\begin{tikzcd}
|
|
||||||
{X \setminus X_\omega =} & {(X_0 \setminus X_1)} & \cup & {(X_0 \setminus X_1)} & \cup & {(X_0 \setminus X_1)} & \cdots & {} \\
|
|
||||||
{Y\setminus Y_\omega =} & {(Y_0 \setminus Y_1)} & \cup & {(Y_0 \setminus Y_1)} & \cup & {(Y_0 \setminus Y_1)} & \cdots & {}
|
|
||||||
\arrow["f"'{pos=0.7}, from=1-2, to=2-4]
|
|
||||||
\arrow["g"{pos=0.1}, from=2-2, to=1-4]
|
|
||||||
\arrow["f"{pos=0.8}, from=1-6, to=2-8]
|
|
||||||
\arrow["g"{pos=0.1}, from=2-6, to=1-8]
|
|
||||||
\end{tikzcd}\]
|
|
||||||
%}
|
|
||||||
|
|
||||||
By \autoref{thm:lusinsouslin}
|
|
||||||
the injective image via a Borel set of a Borel set is Borel.
|
|
||||||
|
|
||||||
\autoref{thm:lusinsouslin} also gives that the inverse
|
|
||||||
of a bijective Borel map is Borel.
|
|
||||||
So we can just do the same proof and every set will be Borel.
|
|
Loading…
Reference in a new issue