This commit is contained in:
parent
e962b1a314
commit
ebf7add005
8 changed files with 93 additions and 26 deletions
|
@ -109,7 +109,7 @@
|
||||||
(If we intersect $A$ with an open $U$,
|
(If we intersect $A$ with an open $U$,
|
||||||
then $A \cap U$ is not dense in $U$).
|
then $A \cap U$ is not dense in $U$).
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\todo{Think about this}
|
%\todo{Think about this}
|
||||||
|
|
||||||
A set $B \subseteq X$ is \vocab{meager}
|
A set $B \subseteq X$ is \vocab{meager}
|
||||||
(or \vocab{first category}),
|
(or \vocab{first category}),
|
||||||
|
@ -139,8 +139,6 @@
|
||||||
Note that open sets and meager sets have the Baire property.
|
Note that open sets and meager sets have the Baire property.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{example}
|
\begin{example}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $\Q \subseteq \R$ is $F_\sigma$.
|
\item $\Q \subseteq \R$ is $F_\sigma$.
|
||||||
|
|
|
@ -91,7 +91,7 @@
|
||||||
Then every comeager set of $X$ is dense in $X$.
|
Then every comeager set of $X$ is dense in $X$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\todo{Proof (copy from some other lecture)}
|
\todo{Proof (copy from some other lecture)}
|
||||||
\begin{proposition}
|
\begin{theoremdef}
|
||||||
Let $X$ be a topological space.
|
Let $X$ be a topological space.
|
||||||
The following are equivalent:
|
The following are equivalent:
|
||||||
\begin{enumerate}[(i)]
|
\begin{enumerate}[(i)]
|
||||||
|
@ -101,7 +101,9 @@
|
||||||
\item The intersection of countable many
|
\item The intersection of countable many
|
||||||
open dense sets is dense.
|
open dense sets is dense.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{proposition}
|
In this case $X$ is called a \vocab{Baire space}.
|
||||||
|
\footnote{see \yaref{s5e1}}
|
||||||
|
\end{theoremdef}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
\todo{Proof (short)}
|
\todo{Proof (short)}
|
||||||
|
|
||||||
|
@ -118,7 +120,6 @@
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
% TODO Fubini
|
|
||||||
\begin{notation}
|
\begin{notation}
|
||||||
Let $X ,Y$ be topological spaces,
|
Let $X ,Y$ be topological spaces,
|
||||||
$A \subseteq X \times Y$
|
$A \subseteq X \times Y$
|
||||||
|
@ -139,10 +140,11 @@ The following similar to Fubini,
|
||||||
but for meager sets:
|
but for meager sets:
|
||||||
|
|
||||||
\begin{theorem}[Kuratowski-Ulam]
|
\begin{theorem}[Kuratowski-Ulam]
|
||||||
\label{thm:kuratowskiulam}
|
\yalabel{Kuratowski-Ulam}{Kuratowski-Ulam}{thm:kuratowskiulam}
|
||||||
Let $X,Y$ be second countable topological spaces.
|
Let $X,Y$ be second countable topological spaces.
|
||||||
Let $A \subseteq X \times Y$
|
Let $A \subseteq X \times Y$
|
||||||
be a set with the Baire property.
|
be a set with the Baire property.%
|
||||||
|
\footnote{It is important that $A$ has the Baire property (cf. \yaref{s5e4}).}
|
||||||
|
|
||||||
Then
|
Then
|
||||||
\begin{enumerate}[(i)]
|
\begin{enumerate}[(i)]
|
||||||
|
|
|
@ -203,6 +203,3 @@ i.e.~$\Delta^0_1$ is the set of clopen sets.
|
||||||
Consider the cofinite topology on $\omega_1$.
|
Consider the cofinite topology on $\omega_1$.
|
||||||
Then the non-empty open sets of this are not $F_\sigma$.
|
Then the non-empty open sets of this are not $F_\sigma$.
|
||||||
\end{example}
|
\end{example}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -119,7 +119,7 @@ We will see that not every analytic set is Borel.
|
||||||
Take $f^+\colon X \times Z \to Y \times Z, f^+ = f \times \id$.
|
Take $f^+\colon X \times Z \to Y \times Z, f^+ = f \times \id$.
|
||||||
Then
|
Then
|
||||||
\[f^{-1}(B) = \underbrace{\proj_X(\overbrace{(\underbrace{f^+}_{\mathclap{\text{Borel}}})^{-1}(\underbrace{B_0}_{\mathclap{\text{Borel}}})}^{\text{Borel}})}_{\text{analytic}}.\]
|
\[f^{-1}(B) = \underbrace{\proj_X(\overbrace{(\underbrace{f^+}_{\mathclap{\text{Borel}}})^{-1}(\underbrace{B_0}_{\mathclap{\text{Borel}}})}^{\text{Borel}})}_{\text{analytic}}.\]
|
||||||
\item See \yaref{ex:7.2}.
|
\item See \yaref{s7e2}.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
@ -167,5 +167,6 @@ We will see later that $\Sigma^1_1(X) \cap \Pi^1_1(X) = \cB(X)$.
|
||||||
|
|
||||||
\begin{remark}+
|
\begin{remark}+
|
||||||
Showing that there exist sets that don't have the Baire property
|
Showing that there exist sets that don't have the Baire property
|
||||||
requires the axiom of choice.\todo{Copy exercise from sheet 5}
|
requires the axiom of choice.
|
||||||
|
An example of such a set is constructed in \yaref{s5e4}.
|
||||||
\end{remark}
|
\end{remark}
|
||||||
|
|
|
@ -74,7 +74,7 @@
|
||||||
Then $A$ and $B$ are Borel isomorphic.
|
Then $A$ and $B$ are Borel isomorphic.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
\todo{Homework}
|
Cf.~\yaref{s7e4}.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{theorem}[\vocab{Isomorphism Theorem}]
|
\begin{theorem}[\vocab{Isomorphism Theorem}]
|
||||||
|
|
|
@ -5,11 +5,6 @@
|
||||||
% Sheet 5 - 18.5 / 20
|
% Sheet 5 - 18.5 / 20
|
||||||
|
|
||||||
\nr 1
|
\nr 1
|
||||||
\todo{handwritten}
|
|
||||||
Let $B \subseteq C$ be comeager.
|
|
||||||
Then $B = B_1 \cup B_2$,
|
|
||||||
where $B_1$ is dense $G_\delta$
|
|
||||||
and $B_2$ is meager.
|
|
||||||
|
|
||||||
\begin{fact}
|
\begin{fact}
|
||||||
$X$ is Baire iff every non-empty open set is non-meager.
|
$X$ is Baire iff every non-empty open set is non-meager.
|
||||||
|
@ -19,6 +14,60 @@ and $B_2$ is meager.
|
||||||
is Baire.
|
is Baire.
|
||||||
\end{fact}
|
\end{fact}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{enumerate}[(a)]
|
||||||
|
\item Let $X$ be a non-empty Baire space
|
||||||
|
and let $A \subseteq X$.
|
||||||
|
Show that $A$ cannot be both meager and comeager.
|
||||||
|
|
||||||
|
|
||||||
|
Suppose that $A \subseteq X$ is meager
|
||||||
|
and comeager.
|
||||||
|
Then $A = \bigcup_{n < \omega} U_n$
|
||||||
|
and $X \setminus A = \bigcup_{n < \omega} V_n$
|
||||||
|
for some nwd sets $U_n, V_n$.
|
||||||
|
Then $X = A \cup (X \setminus A)$ is meager.
|
||||||
|
Let $X = \bigcup_{n < \omega} W_n$ be a union of nwd
|
||||||
|
sets.
|
||||||
|
Wlog.~the $W_n$ are closed (otherwise replace them $\overline{W_n}$)
|
||||||
|
Then $\emptyset = \bigcap_{n < \omega} (X \setminus W_n)$
|
||||||
|
is a countable intersection of open, dense sets,
|
||||||
|
hence dense $\lightning$
|
||||||
|
|
||||||
|
\item Let $X$ be a topological space. The relation $=^\ast$ is transitive:
|
||||||
|
|
||||||
|
Suppose $A =^\ast B$ and $B =^\ast C$.
|
||||||
|
Then $A \symdif C \subseteq (A \symdif B \cup B \symdif C)$
|
||||||
|
is contained in a meager set.
|
||||||
|
Since a subset of a nwd set
|
||||||
|
is nwd, a subset of a meager set is meager.
|
||||||
|
Hence $A \symdif C$ is meager, thus $A =^\ast C$.
|
||||||
|
|
||||||
|
\item Let $X$ be a topological space.
|
||||||
|
Let $A \subseteq X$ be a set with the Baire property,
|
||||||
|
then at least one of the following hold:
|
||||||
|
\begin{enumerate}[(i)]
|
||||||
|
\item $A $ is meager,
|
||||||
|
\item there exists $\emptyset = U \overset{\text{open}}{\subseteq} X$
|
||||||
|
such that $A \cap U$ is comeager in $U$.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
Suppose there was $A \subseteq X$ such that (i)
|
||||||
|
does not hold.
|
||||||
|
Then there exists $U \overset{\text{open}}{\subseteq} X$
|
||||||
|
such that $A =^\ast U$.
|
||||||
|
In particular, $A \symdif U$ is meager,
|
||||||
|
hence $U \cap (A \symdif U) = U \setminus A$ is meager.
|
||||||
|
Thus $A \cap U$ is comeager in $U$.
|
||||||
|
|
||||||
|
Now suppose that $X$ is a Baire space.
|
||||||
|
Suppose that for $A$ (i) and (ii) hold.
|
||||||
|
Let $\emptyset \neq U \overset{\text{open}}{\subseteq} X$
|
||||||
|
be such that $A \cap U$ is comeager in $U$.
|
||||||
|
Since $U$ is a Baire space,
|
||||||
|
this contradicts (a).
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
\nr 2
|
\nr 2
|
||||||
|
|
||||||
Let $(U_i)_{i < \omega}$ be a countable base of $Y$.
|
Let $(U_i)_{i < \omega}$ be a countable base of $Y$.
|
||||||
|
@ -41,15 +90,34 @@ so $f\defon{A}^{-1}(U_i) = V_i \cap A$ is open.
|
||||||
|
|
||||||
|
|
||||||
\nr 4
|
\nr 4
|
||||||
|
\begin{lemma}
|
||||||
|
There exists a non-meager subset $A \subseteq \R^2$
|
||||||
|
such that no three points of $A$ are collinear.
|
||||||
|
\end{lemma}
|
||||||
|
This requires the use of the axiom of choice.
|
||||||
|
\begin{proof}
|
||||||
|
Enumerate the continuum-many $F_\sigma$ subsets of $\R^2$
|
||||||
|
as $(F_i)_{i < \fc}$.
|
||||||
|
We will inductively construct a sequence $(a_i)_{i < \fc}$
|
||||||
|
of points of $\R^2$ such that for each $i < \fc$:
|
||||||
|
\begin{enumerate}[(i)]
|
||||||
|
\item $\{a_j | j \le i\} $ is not a subset of $F_i$ and
|
||||||
|
\item $\{a_j | j \le i\}$ does not contain any three collinear points.
|
||||||
|
\end{enumerate}
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
\item $|B| = \fc$, since $B$ contains a comeager
|
\item Let $B = \{x \in \R | (F_i)_x \text{ is meager}\}$.
|
||||||
|
Then $B$ is comeager in $\R$ and $|B| = \fc$.
|
||||||
|
|
||||||
|
We have $|B| = \fc$, since $B$ contains a comeager
|
||||||
$G_\delta$ set, $B'$:
|
$G_\delta$ set, $B'$:
|
||||||
$B'$ is Polish,
|
$B'$ is Polish,
|
||||||
hence $B' = P \cup C$
|
hence $B' = P \cup C$
|
||||||
for $P$ perfect and $C$ countable,
|
for $P$ perfect and $C$ countable,
|
||||||
and $|P| \in \{\fc, 0\}$.
|
and $|P| \in \{\fc, 0\}$.
|
||||||
But $B'$ can't contain isolated point.
|
But $B'$ can't contain isolated point.
|
||||||
\item To ensure that (a) holds, it suffices to chose
|
\item We use $B$ to find a suitable point $a_i$:
|
||||||
|
|
||||||
|
To ensure that (i) holds, it suffices to chose
|
||||||
$a_i \not\in F_i$.
|
$a_i \not\in F_i$.
|
||||||
Since $|B| = \fc$ and $|\{a_i | j < i\}| = |i| < \fc$,
|
Since $|B| = \fc$ and $|\{a_i | j < i\}| = |i| < \fc$,
|
||||||
there exists some $x \in B \setminus \{\pi_1(a_j)| j <i\}$,
|
there exists some $x \in B \setminus \{\pi_1(a_j)| j <i\}$,
|
||||||
|
@ -77,13 +145,16 @@ so $f\defon{A}^{-1}(U_i) = V_i \cap A$ is open.
|
||||||
\item $A$ is by construction not a subset of any $F_\sigma$ meager set.
|
\item $A$ is by construction not a subset of any $F_\sigma$ meager set.
|
||||||
Hence it is not meager, since any meager set is contained
|
Hence it is not meager, since any meager set is contained
|
||||||
in an $F_\sigma$ meager set.
|
in an $F_\sigma$ meager set.
|
||||||
\item For every $x \in \R$ we have that $A_x$ contains at most
|
\end{enumerate}
|
||||||
|
\end{proof}
|
||||||
|
\begin{enumerate}
|
||||||
|
\item[(d)] For every $x \in \R$ we have that $A_x$ contains at most
|
||||||
two points, hence it is meager.
|
two points, hence it is meager.
|
||||||
In particular $\{x \in \R | A_x \text{ is meager}\} = \R$
|
In particular $\{x \in \R | A_x \text{ is meager}\} = \R$
|
||||||
is comeager.
|
is comeager.
|
||||||
However $A$ is not meager.
|
However $A$ is not meager.
|
||||||
Hence $A$ can not be a set with the Baire property
|
Hence $A$ can not be a set with the Baire property
|
||||||
by the theorem.
|
by \yaref{thm:kuratowskiulam}.
|
||||||
In particular, the assumption of the set having
|
In particular, the assumption of the set having
|
||||||
the BP is necessary.
|
the BP is necessary.
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
\subsection{Sheet 7}
|
\subsection{Sheet 7}
|
||||||
|
|
||||||
\tutorial{08}{2023-12-05}{}
|
\tutorial{08}{2023-12-05}{}
|
||||||
% 17 / 20
|
% 17 / 20
|
||||||
\nr 1
|
\nr 1
|
||||||
|
@ -45,7 +44,6 @@
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\nr 2
|
\nr 2
|
||||||
\yalabel{Exercise}{}{ex:7.2}
|
|
||||||
|
|
||||||
|
|
||||||
Recall \autoref{thm:analytic}.
|
Recall \autoref{thm:analytic}.
|
||||||
|
|
|
@ -153,6 +153,6 @@
|
||||||
|
|
||||||
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
||||||
\newcommand\tutorial[3]{\hrule{\color{darkgray}\hfill{\tiny[Tutorial #1, #2]}}}
|
\newcommand\tutorial[3]{\hrule{\color{darkgray}\hfill{\tiny[Tutorial #1, #2]}}}
|
||||||
\newcommand\nr[1]{\subsubsection{Exercise #1}}
|
\newcommand\nr[1]{\subsubsection{Exercise #1}\yalabel{Sheet \arabic{subsection}, Exercise #1}{E \arabic{subsection}.#1}{s\arabic{subsection}e#1}}
|
||||||
|
|
||||||
\usepackage[bibfile=bibliography/references.bib, imagefile=bibliography/images.bib]{mkessler-bibliography}
|
\usepackage[bibfile=bibliography/references.bib, imagefile=bibliography/images.bib]{mkessler-bibliography}
|
||||||
|
|
Loading…
Reference in a new issue