This commit is contained in:
parent
820f756bd4
commit
eb87abe472
5 changed files with 221 additions and 4 deletions
|
@ -1,7 +1,7 @@
|
|||
\lecture{10}{2023-11-17}{}
|
||||
\todo{Start a new subsection here?}
|
||||
\begin{theorem}[\vocab{Lusin separation theorem}]
|
||||
\yalabel{Lusin Separation Theorem}{Lusin Separation Thm.}{thm:lusinseparation}
|
||||
\yalabel{Lusin Separation Theorem}{Lusin Separation}{thm:lusinseparation}
|
||||
Let $X$ be Polish and $A,B \subseteq X$ disjoint analytic.
|
||||
Then there is a Borel set $C$,
|
||||
such that $A \subseteq C$ and $C \cap B = \emptyset$.
|
||||
|
@ -104,7 +104,7 @@ we need the following definition:
|
|||
such that $f\defon{A}$ is injective.
|
||||
Then $f(A)$ is Borel.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\begin{refproof}{thm:lusinsouslin}
|
||||
W.l.o.g.~suppose that $f$ is continuous
|
||||
$A$ is closed,\footnote{We might even assume that $A$ is clopen, but we only need closed.}
|
||||
and $X = \cN$ by \yaref{thm:bairetopolish}:
|
||||
|
@ -153,7 +153,7 @@ we need the following definition:
|
|||
The existence of such $B_s^\ast$ implies that
|
||||
$f(A)$ is Borel.
|
||||
|
||||
By a generalization of \yaref{thm:lusinseparation},\todo{TODO}
|
||||
By the \yaref{cor:lusinseparation},
|
||||
for all $k < \omega$,
|
||||
we can separate the collection of disjoint analytic sets $\{B_s : s \in \omega^k\}$
|
||||
Borel sets,
|
||||
|
@ -174,5 +174,6 @@ we need the following definition:
|
|||
\]
|
||||
|
||||
|
||||
\phantom\qedhere
|
||||
|
||||
\end{proof}
|
||||
\end{refproof}
|
||||
|
|
190
inputs/lecture_11.tex
Normal file
190
inputs/lecture_11.tex
Normal file
|
@ -0,0 +1,190 @@
|
|||
\lecture{11}{2023-11-21}{}
|
||||
|
||||
\begin{refproof}{thm:lusinsouslin}
|
||||
Note that $B_{(n_0,\ldots, n_k)} \subseteq B_{(n_0,\ldots, n_k)}^\ast \subseteq \overline{B_{n_0,\ldots, n_k}}$.
|
||||
|
||||
We want to show that
|
||||
\[
|
||||
f(A) = \bigcap_{k < \omega} \bigcup_{s \in \omega^k} B_s^\ast.
|
||||
\]
|
||||
Let $x \in f(A)$.
|
||||
Then take $a \in A$ such that $x = f(a)$.
|
||||
Then
|
||||
\[x \in \bigcap_k \underbrace{B_{a\defon{k}}}_{= f(A \cap N_{a\defon{k}})} \subseteq \bigcap_{k} B^\ast_{a\defon{k}}.\]
|
||||
This gives $f(A) \subseteq \bigcap_{k < \omega} \bigcup_{s \in \omega^k} B_s^\ast$.
|
||||
|
||||
If $x \in \bigcap_{k < \omega} \bigcup_{s \in \omega^k} B_s^\ast$,
|
||||
Then there is a unique $a$ such that
|
||||
$x \in \bigcap_k B^\ast_{a\defon{k}}$.
|
||||
|
||||
\begin{claim}
|
||||
$a \in A$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
We have $B^\ast_{a\defon{k}} \subseteq \overline{B_{a\defon{k}}}$.
|
||||
So $x \in \bigcap_k \overline{B_{a\defon{k}}}$.
|
||||
In particular, $B_{a\defon{k}} \neq \emptyset$
|
||||
for all $k$.
|
||||
So for all $k$ we get that $A \cap N_{a\defon{k}} \neq \emptyset$.
|
||||
But $A$ is closed and $N_{a\defon{k}}$
|
||||
is clopen for all $k$.
|
||||
We have $\{a\} = \bigcup_k N_{a\defon{k}}$,
|
||||
so $a \in A$.
|
||||
\end{subproof}
|
||||
|
||||
\begin{claim}
|
||||
$f(a) = x$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
We have $f(a) \in \bigcap_k B_{a\defon{k}}$.
|
||||
Suppose $f(a) \neq x$.
|
||||
Pick $U \ni f(a)$ open
|
||||
such that $x \not\in \overline{U}$.
|
||||
By continuity of $f$,
|
||||
we get that $f(N_{a\defon{k_0}}) \subseteq U$
|
||||
for $k_0$ large enough.
|
||||
So $x \not\in \overline{f(N_{a\defon{k_0}})}$.
|
||||
In particular
|
||||
$x \not\in \overline{f(N_{a\defon{k_0}})} = \overline{B_{a\defon{k_0}}} \supset B^\ast_{a\defon{k_0}}$.
|
||||
But $x \in \bigcap_k B^\ast_{a\defon{k}} \lightning$.
|
||||
\end{subproof}
|
||||
\end{refproof}
|
||||
|
||||
\begin{corollary}[of the \yaref{thm:lusinseparation}]
|
||||
\yalabel{Corollary of the Lusin Separation Theorem}{Lusin Separation}{cor:lusinseparation}
|
||||
Let $X$ be Polish.
|
||||
Let $A_1, A_2, A_3,\ldots \subseteq X$ be analytic
|
||||
and pairwise disjoint.
|
||||
Then there are pairwise disjoint Borel sets $B_i \supseteq A_i$.
|
||||
\end{corollary}
|
||||
\begin{proof}
|
||||
For all $i$, let $B_i, C_i$
|
||||
be disjoint Borel sets,
|
||||
such that $A_i \subseteq B_i$
|
||||
and $\bigcup_{j \neq i} A_j \subseteq C_i$.
|
||||
Take $D_i \coloneqq B_i \cap \bigcap_{j \neq i} C_j$.
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem}[\vocab{Borel Schröder-Bernstein}]
|
||||
\yalabel{Schröder-Bernstein for Borel sets}{Schröder-Bernstein}{thm:bsb}
|
||||
Let $A, B$ be Borel in some Polish spaces.
|
||||
Suppose that there are Borel embeddings
|
||||
$f\colon A \hookrightarrow B$
|
||||
and $g\colon B \hookrightarrow A$.
|
||||
Then $A$ and $B$ are Borel isomorphic.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\todo{Homework}
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem}[\vocab{Isomorphism Theorem}]
|
||||
\yalabel{Isomorphism Theorem}{Isomorphism Thm.}{thm:isomorphism}
|
||||
Let $X, Y$ be Borel in some Polish spaces.
|
||||
Then $X$ is Borel isomorphic
|
||||
to $Y$ iff $|X| = |Y|$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
$\implies$ is clear.
|
||||
Suppose that $|X| = |Y| \le \aleph_0$,
|
||||
then any bijection suffices,
|
||||
since all subsets are Borel.
|
||||
If $|X| = |Y| > \aleph_0$,
|
||||
then they must have cardinality $\fc$,
|
||||
since we can embed the Cantor space.
|
||||
|
||||
It suffices to show that if $X$ is an uncountable
|
||||
Polish space and $\cC = 2^\omega$ the Cantor space,
|
||||
then they are Borel isomorphic.
|
||||
There is $2^\omega \hookrightarrow X$ Borel
|
||||
(continuous wrt.~to the topology of $X$)
|
||||
On the other hand
|
||||
\[
|
||||
X \hookrightarrow\cN \hookrightarrow[\text{continuous embedding}]\cC
|
||||
\]
|
||||
\todo{second inclusion was on a homework sheet}
|
||||
For the first inclusion,
|
||||
recall that there is a continuous bijection $b\colon D \to X$,
|
||||
where $D \overset{\text{closed}}{\subseteq} \cN$.
|
||||
Consider $b^{-1}$.
|
||||
Whenever $B \subseteq X$ is Borel,
|
||||
we have that $b^{-1}(B)$ is Borel,
|
||||
since $b$ is continuous.
|
||||
For $A \subseteq \cN$ is Borel,
|
||||
we have that $b$ with respect to $b(A)$
|
||||
is Borel,
|
||||
since $b\defon{A}$ is injective,
|
||||
by \yaref{thm:lusinsouslin}.
|
||||
|
||||
Hence \yaref{thm:bsb} can be applied.
|
||||
\end{proof}
|
||||
|
||||
\subsection{Projective Hierarchy}
|
||||
|
||||
|
||||
% https://q.uiver.app/#q=WzAsNixbMCwxLCJcXERlbHRhXjFfMShYKSJdLFsxLDAsIlxcU2lnbWFeMV8xKFgpIl0sWzEsMiwiXFxQaV4xXzEoWCkiXSxbMiwxLCJcXERlbHRhXjFfMihYKSJdLFszLDAsIlxcU2lnbWFeMV8yKFgpIl0sWzMsMiwiXFxQaV4xXzIoWCkiXSxbMCwxLCJcXHN1YnNldGVxIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMCwyLCJcXHN1YnNldGVxIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMiwzLCJcXHN1YnNldGVxIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMSwzLCJcXHN1YnNldGVxIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMyw0LCJcXHN1YnNldGVxIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMyw1LCJcXHN1YnNldGVxIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XV0=
|
||||
\[\begin{tikzcd}
|
||||
& {\Sigma^1_1(X)} && {\Sigma^1_2(X)} \\
|
||||
{\Delta^1_1(X)} && {\Delta^1_2(X)} \\
|
||||
& {\Pi^1_1(X)} && {\Pi^1_2(X)}
|
||||
\arrow["\subseteq", hook, from=2-1, to=1-2]
|
||||
\arrow["\subseteq"', hook, from=2-1, to=3-2]
|
||||
\arrow["\subseteq"', hook, from=3-2, to=2-3]
|
||||
\arrow["\subseteq", hook, from=1-2, to=2-3]
|
||||
\arrow["\subseteq", hook, from=2-3, to=1-4]
|
||||
\arrow["\subseteq", hook, from=2-3, to=3-4]
|
||||
\end{tikzcd}\]
|
||||
|
||||
\begin{definition}
|
||||
Let $X$ be a Polish space.
|
||||
We define
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\Delta^1_n(X) &\coloneqq& \Sigma^1_n(X) \cap \Pi^1_n(X)\\
|
||||
\Pi^1_n(X) &=& \{A \subseteq X : X \setminus A \in \Sigma^1_n(X)\}\\
|
||||
\Sigma^1_{n+1}(X) &=& \{ A \subseteq X : \exists B \in \Pi^1_n(X \times \cN) .~A = \proj_X[B]\}
|
||||
\end{IEEEeqnarray*}
|
||||
\end{definition}
|
||||
|
||||
\begin{theorem}
|
||||
Every analytic and every coanalytic set
|
||||
has the Baire property.
|
||||
\end{theorem}
|
||||
We will not proof this in this lecture.
|
||||
|
||||
|
||||
\subsection{Trees} % TODO section?
|
||||
|
||||
|
||||
Recall that a \vocab{tree} on $\N$ is a subset of
|
||||
$\N^{<\N}$
|
||||
closed under taking initial segments.
|
||||
|
||||
We now identify trees with their characteristic functions,
|
||||
i.e.~we want to associate a tree $T \subseteq \N^{<\N}$
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\One_T\colon \omega^{<\omega} &\longrightarrow & \{0,1\} \\
|
||||
x &\longmapsto & \begin{cases}
|
||||
1 &: x \in T,\\
|
||||
0 &: x \not\in T.
|
||||
\end{cases}
|
||||
\end{IEEEeqnarray*}
|
||||
Note that $\One_T \in {\{0,1\}^\N}^{< \N}$.
|
||||
|
||||
Let $\Tr = \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\N}$.
|
||||
|
||||
\begin{observe}
|
||||
\[
|
||||
\Tr \subseteq {2^{\N}}^{<\N}
|
||||
\]
|
||||
is closed (where we take the topology of the Cantor space).
|
||||
\end{observe}
|
||||
Indeed, for any $ s \in \N^{<\N}$
|
||||
we have that $\{T \in {2^{\N}}^{<\N} : s \in T\}$
|
||||
and $\{T \in {2^{\N}}^{<\N} : s\not\in T\}$ are clopen.
|
||||
Boolean combinations of such sets are clopen as well.
|
||||
In particular for $s$ fixed,
|
||||
we have that
|
||||
\[\{A \in {2^{\N}}^{<\N} : s \in A \text{ and } s' \in A \text{ for any initial segment $s' \subseteq s$}\}\]
|
||||
is clopen in ${2^{\N}}^{<\N}$.
|
||||
|
||||
|
||||
|
23
inputs/tutorial_05.tex
Normal file
23
inputs/tutorial_05.tex
Normal file
|
@ -0,0 +1,23 @@
|
|||
\tutorial{05}{}{}
|
||||
|
||||
% Sheet 5 - 18.5 / 20
|
||||
|
||||
\subsection{Exercise 1}
|
||||
|
||||
Let $B \subseteq C$ be comeager.
|
||||
Then $B = B_1 \cup B_2$,
|
||||
where $B_1$ is dense $G_\delta$
|
||||
and $B_2$ is meager.
|
||||
|
||||
|
||||
\begin{fact}
|
||||
$X$ is Baire iff every non-empty open set is non-meager.
|
||||
|
||||
In particular, let $X$ be Baire,
|
||||
then $U \overset{\text{open}}{\subseteq} X$
|
||||
is Baire.
|
||||
\end{fact}
|
||||
|
||||
\subsection{Exercise 2}
|
||||
|
||||
|
|
@ -126,6 +126,8 @@
|
|||
\DeclareSimpleMathOperator{trcl}
|
||||
\DeclareSimpleMathOperator{tcl}
|
||||
|
||||
\DeclareSimpleMathOperator{Tr}
|
||||
|
||||
\newcommand{\concat}{\mathop{{}^{\scalebox{.7}{$\smallfrown$}}}}
|
||||
|
||||
%https://tex.stackexchange.com/questions/73437/how-do-i-typeset-the-concatenation-of-strings-properly
|
||||
|
|
|
@ -34,6 +34,7 @@
|
|||
\input{inputs/lecture_08}
|
||||
\input{inputs/lecture_09}
|
||||
\input{inputs/lecture_10}
|
||||
\input{inputs/lecture_11}
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue