reference to sheet 11
Some checks failed
Build latex and deploy / checkout (push) Failing after 18m14s
Some checks failed
Build latex and deploy / checkout (push) Failing after 18m14s
This commit is contained in:
parent
236874b1a5
commit
dfd9be7925
1 changed files with 3 additions and 2 deletions
|
@ -1,5 +1,4 @@
|
||||||
\subsection{The Ellis semigroup}
|
\subsection{The Ellis semigroup}
|
||||||
% TODO ANKI-MARKER
|
|
||||||
\lecture{17}{2023-12-12}{The Ellis semigroup}
|
\lecture{17}{2023-12-12}{The Ellis semigroup}
|
||||||
|
|
||||||
Let $(X, d)$ be a compact metric space
|
Let $(X, d)$ be a compact metric space
|
||||||
|
@ -75,7 +74,7 @@ Properties of $(X,T)$ translate to properties of $E(X,T)$:
|
||||||
\]
|
\]
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{subproof}
|
\begin{subproof}
|
||||||
\todo{Homework}
|
Cf.~\yaref{s11e1}
|
||||||
\end{subproof}
|
\end{subproof}
|
||||||
|
|
||||||
Let $g \in G$.
|
Let $g \in G$.
|
||||||
|
@ -163,6 +162,8 @@ But it is interesting for other semigroups.
|
||||||
\todo{The other direction is left as an easy exercise.}
|
\todo{The other direction is left as an easy exercise.}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
% TODO ANKI-MARKER
|
||||||
|
|
||||||
Let $(X,T)$ be a flow.
|
Let $(X,T)$ be a flow.
|
||||||
Then by Zorn's lemma, there exists $X_0 \subseteq X$
|
Then by Zorn's lemma, there exists $X_0 \subseteq X$
|
||||||
such that $(X_0, T)$ is minimal.
|
such that $(X_0, T)$ is minimal.
|
||||||
|
|
Loading…
Reference in a new issue