fixed typo
This commit is contained in:
parent
8f86b71d92
commit
de8e41de83
2 changed files with 2 additions and 1 deletions
|
@ -255,7 +255,7 @@ Recall:
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
Let $\Sigma = \{(X_i, T) : i \in I\} $
|
Let $\Sigma = \{(X_i, T) : i \in I\} $
|
||||||
be a collection of factors of $(X,T)$. % TODO State precise definition of a factor
|
be a collection of factors of $(X,T)$. % TODO State precise definition of a factor
|
||||||
Let $\pi_i\colon (X,T) \to (X_i, T)$ denote the factor map.
|
Let $\pi_i\colon (X,T) \to (X_i, T)$ denote the factor maps.
|
||||||
Then $(X, T)$ is the \vocab{limit} of $\Sigma$
|
Then $(X, T)$ is the \vocab{limit} of $\Sigma$
|
||||||
iff
|
iff
|
||||||
\[
|
\[
|
||||||
|
|
|
@ -169,6 +169,7 @@ In particular,
|
||||||
for $x \in X$ and $\overline{Tx} = Y$
|
for $x \in X$ and $\overline{Tx} = Y$
|
||||||
we have that $(Y,T)$ is a flow.
|
we have that $(Y,T)$ is a flow.
|
||||||
However if we pick $y \in Y$, $Ty$ might not be dense.
|
However if we pick $y \in Y$, $Ty$ might not be dense.
|
||||||
|
% TODO: question!
|
||||||
% TODO: think about this!
|
% TODO: think about this!
|
||||||
% We want to a minimal subflow in a nice way:
|
% We want to a minimal subflow in a nice way:
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue