This commit is contained in:
parent
1d96095f62
commit
de89e2dc1d
7 changed files with 156 additions and 25 deletions
74
anki
Normal file
74
anki
Normal file
|
@ -0,0 +1,74 @@
|
||||||
|
Hindman (Furstenberg)
|
||||||
|
|
||||||
|
[latex]
|
||||||
|
\begin{theorem}[Hindman]
|
||||||
|
\label{thm:hindman}
|
||||||
|
\label{thm:hindmanfurstenberg}
|
||||||
|
If $\N$ is partitioned into finitely many
|
||||||
|
sets,
|
||||||
|
then there is is an infinite subset $H \subseteq \N$
|
||||||
|
such that all finite sums of distinct
|
||||||
|
elements of $H$
|
||||||
|
belong to the same set of the partition.
|
||||||
|
\end{theorem}
|
||||||
|
[/latex]
|
||||||
|
Use:
|
||||||
|
[latex]
|
||||||
|
\begin{theorem}
|
||||||
|
\label{thm:unifrprox}
|
||||||
|
Let $X$ be a compact Hausdorff space and $T\colon X \to X$
|
||||||
|
continuous.
|
||||||
|
Consider $(X,T)$.%TODO different notations
|
||||||
|
Then for every $x \in X$
|
||||||
|
there is a uniformly recurrent $y \in X$
|
||||||
|
such that $y $ is proximal to $x$.
|
||||||
|
\end{theorem}
|
||||||
|
[/latex]
|
||||||
|
[latex]
|
||||||
|
\begin{refproof}{thm:hindmanfurstenberg}[Furstenberg]
|
||||||
|
\begin{itemize}
|
||||||
|
\item View partition as $f\colon \N \to k$. Consider $X \coloneqq k^{\N}$ (product topology, compact and Hausdorff).
|
||||||
|
Let $x \in X$ be the given partition.
|
||||||
|
\item $T\colon X \to X$ shift: $T(y)(n) \coloneqq y(n+1)$.
|
||||||
|
\item Let $y$ proximal to $x$, uniformly recurrent.
|
||||||
|
\begin{itemize}
|
||||||
|
\item proximal $\leadsto$ $\forall N$.~$T^n(x)\defon_N = T^n(y)\defon_N$
|
||||||
|
for infinitely many $n$.
|
||||||
|
\item uniform recurrence $\leadsto$
|
||||||
|
\[
|
||||||
|
\forall n .~\exists N.~\forall r.y\defon{\{r,\ldots,r+N-1\}}
|
||||||
|
\text{ contains } $y\defon{\{0,\ldots,n\}}$ \text{ as a subsequence.}
|
||||||
|
\]
|
||||||
|
(consider neighbourhood $G_n = \{z \in X : z\defon{n} = y\defon{n} \}$).
|
||||||
|
\end{itemize}
|
||||||
|
\item Consider $c \coloneqq y(0)$. This color works:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $G_0 \coloneqq y\defon{\{0\}}$,
|
||||||
|
take $N_0$ such that $y\defon{\{r, \ldots, r + N_0 - 1\}} $
|
||||||
|
contains $y(0)$ for all $r$ (unif.~recurrence).
|
||||||
|
$y\defon{\{r,\ldots,r+N_0 - 1\} } = x\defon{\{r,\ldots,r+N_0 -1\} }$
|
||||||
|
for infinitely many $r$ (proximality).
|
||||||
|
Fix $h_0 \in \N$ such that $x(h_0) = y(0)$.
|
||||||
|
\item $G_1 \coloneqq y\defon{\{0,\ldots,h_0\} }$,
|
||||||
|
take $N_1$ such that $y\defon{\{r,\ldots,r +N_1-1\}}$
|
||||||
|
contains $y\defon{\{0,\ldots,h_0\} }$
|
||||||
|
for all $r$ (unif.~recurrence).
|
||||||
|
So among ever $N_1$ terms, there are two of distance $h_0$
|
||||||
|
where $y$ has value $c$.
|
||||||
|
So $\exists h_1 > h_0$ such that $x(h_1) = x(h_1 + h_0) = c$
|
||||||
|
(proximality).
|
||||||
|
|
||||||
|
\item Repeat:
|
||||||
|
Choose $h_i$ such that
|
||||||
|
for all sums $s$ of subsets of $\{h_0,\ldots, h_{i-1}\}$,
|
||||||
|
$x(s+h_i) = y(s+h_i) = c$:
|
||||||
|
Find $N_i$ such that every $N_i$ consecutive
|
||||||
|
terms of $y$ contain a segment that coincides
|
||||||
|
with the initial segment of $y$
|
||||||
|
up to the largest $s$,
|
||||||
|
then find a segment of length $N_i$ beyond $h_{i-1}$
|
||||||
|
where $x$ and $y$ coincide.
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
\end{refproof}
|
||||||
|
[/latex]
|
|
@ -204,7 +204,6 @@ Such a factor $(Y,T)$ is called a \vocab{maximal isometric extension} of $(Z,T)$
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
\gist{%
|
\gist{%
|
||||||
% TODO TODO TODO Think about this
|
|
||||||
For $z_1,z_1' \in Z_1$ with
|
For $z_1,z_1' \in Z_1$ with
|
||||||
$w_1(z_1) = w_1(z_1')$ let
|
$w_1(z_1) = w_1(z_1')$ let
|
||||||
$\rho(z_1,z_1')$ be the metric on the fiber of $Z_1$ over $W$.
|
$\rho(z_1,z_1')$ be the metric on the fiber of $Z_1$ over $W$.
|
||||||
|
|
|
@ -1,7 +1,6 @@
|
||||||
\lecture{22}{2024-01-16}{}
|
\lecture{22}{2024-01-16}{}
|
||||||
|
|
||||||
\begin{refproof}{thm:21:xnmaxiso}
|
\begin{refproof}{thm:21:xnmaxiso}
|
||||||
% TODO TODO TODO
|
|
||||||
We have the following situation:
|
We have the following situation:
|
||||||
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIl0sWzEsMSwiWF97bn0iXSxbMSwyLCJYX3tuLTF9Il0sWzIsMSwiWSJdLFswLDEsIlxccGlfe259Il0sWzEsMiwiXFx0ZXh0e2lzb21ldHJpY30iLDFdLFswLDIsIlxccGlfe24tMX0iLDIseyJjdXJ2ZSI6Mn1dLFswLDMsIlxccGknIiwwLHsiY3VydmUiOi0zfV0sWzMsMSwiaCIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFszLDIsIlxcb3ZlcmxpbmV7Z30sIFxcdGV4dHsgbWF4LiBpc29tLn0iLDAseyJjdXJ2ZSI6LTJ9XV0=
|
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIl0sWzEsMSwiWF97bn0iXSxbMSwyLCJYX3tuLTF9Il0sWzIsMSwiWSJdLFswLDEsIlxccGlfe259Il0sWzEsMiwiXFx0ZXh0e2lzb21ldHJpY30iLDFdLFswLDIsIlxccGlfe24tMX0iLDIseyJjdXJ2ZSI6Mn1dLFswLDMsIlxccGknIiwwLHsiY3VydmUiOi0zfV0sWzMsMSwiaCIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFszLDIsIlxcb3ZlcmxpbmV7Z30sIFxcdGV4dHsgbWF4LiBpc29tLn0iLDAseyJjdXJ2ZSI6LTJ9XV0=
|
||||||
\[\begin{tikzcd}
|
\[\begin{tikzcd}
|
||||||
|
|
|
@ -1,7 +1,5 @@
|
||||||
\lecture{24}{2024-01-23}{Combinatorics!}
|
\lecture{24}{2024-01-23}{Combinatorics!}
|
||||||
|
|
||||||
% ANKI 2
|
|
||||||
|
|
||||||
|
|
||||||
\subsection{Applications to Combinatorics} % Ramsey Theory}
|
\subsection{Applications to Combinatorics} % Ramsey Theory}
|
||||||
|
|
||||||
|
|
|
@ -191,6 +191,7 @@ to obtain
|
||||||
|
|
||||||
\begin{theorem}[Hindman]
|
\begin{theorem}[Hindman]
|
||||||
\label{thm:hindman}
|
\label{thm:hindman}
|
||||||
|
\label{thm:hindmanfurstenberg}
|
||||||
If $\N$ is partitioned into finitely many
|
If $\N$ is partitioned into finitely many
|
||||||
sets,
|
sets,
|
||||||
then there is is an infinite subset $H \subseteq \N$
|
then there is is an infinite subset $H \subseteq \N$
|
||||||
|
@ -198,7 +199,7 @@ to obtain
|
||||||
elements of $H$
|
elements of $H$
|
||||||
belong to the same set of the partition.
|
belong to the same set of the partition.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}[Galvin,Glazer]
|
\begin{refproof}{thm:hindman}[Galvin,Glazer]
|
||||||
Let $\cU \in \beta\N \setminus \N$
|
Let $\cU \in \beta\N \setminus \N$
|
||||||
be such that $\cU + \cU = \cU$.
|
be such that $\cU + \cU = \cU$.
|
||||||
Let $P$ be the piece of the partition
|
Let $P$ be the piece of the partition
|
||||||
|
@ -234,7 +235,7 @@ to obtain
|
||||||
Chose $x_n > x_{n-1}$ that satisfies this.
|
Chose $x_n > x_{n-1}$ that satisfies this.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
Set $H \coloneqq \{x_i : i < \omega\}$.
|
Set $H \coloneqq \{x_i : i < \omega\}$.
|
||||||
\end{proof}
|
\end{refproof}
|
||||||
|
|
||||||
|
|
||||||
Next time we'll see another proof of this theorem.
|
Next time we'll see another proof of this theorem.
|
||||||
|
|
|
@ -36,7 +36,8 @@ This gives $\N \acts X$.
|
||||||
|
|
||||||
|
|
||||||
We do a second proof of \yaref{thm:hindman}:
|
We do a second proof of \yaref{thm:hindman}:
|
||||||
\begin{proof}[Furstenberg]
|
\begin{refproof}{thm:hindmanfurstenberg}[Furstenberg]
|
||||||
|
\gist{%
|
||||||
A partition of $\N$ into $k$-many pieces can be viewed
|
A partition of $\N$ into $k$-many pieces can be viewed
|
||||||
as a function $f\colon \N \to k$.
|
as a function $f\colon \N \to k$.
|
||||||
|
|
||||||
|
@ -99,10 +100,10 @@ We do a second proof of \yaref{thm:hindman}:
|
||||||
Let $G_0 \coloneqq [y(0)]$
|
Let $G_0 \coloneqq [y(0)]$
|
||||||
and let $N_0$ be such that
|
and let $N_0$ be such that
|
||||||
\[
|
\[
|
||||||
\forall r.~(y(r), \ldots, y(r + N-0 - 1)) \text{ contains $y(0)$.}
|
\forall r.~(y(r), \ldots, y(r + N_0 - 1)) \text{ contains $y(0)$.}
|
||||||
\]
|
\]
|
||||||
By proximality, there exist infinitely many $r$
|
By proximality, there exist infinitely many $r$
|
||||||
such that $(y(r), \ldots, (y(r+N-1)) = (x(r), \ldots, x(r+N-1))$.
|
such that $(y(r), \ldots, (y(r+N_0-1)) = (x(r), \ldots, x(r+N_0-1))$.
|
||||||
Fix $h_0 \in \N$ such that $x(h_0) = y(0)$.
|
Fix $h_0 \in \N$ such that $x(h_0) = y(0)$.
|
||||||
|
|
||||||
\item%
|
\item%
|
||||||
|
@ -133,19 +134,68 @@ We do a second proof of \yaref{thm:hindman}:
|
||||||
$(y(0), \ldots, y(h_0+h_1))$
|
$(y(0), \ldots, y(h_0+h_1))$
|
||||||
is contained in $(x(r), \ldots, x(r+N-1))$.
|
is contained in $(x(r), \ldots, x(r+N-1))$.
|
||||||
Let $(y(0), \ldots, y(h_0+h_1)) = (x(r+s), \ldots, x(r+s+N-1))$.
|
Let $(y(0), \ldots, y(h_0+h_1)) = (x(r+s), \ldots, x(r+s+N-1))$.
|
||||||
\item $\ldots$
|
\item Repeat this:
|
||||||
|
Inductively choose $h_i$ such that $x(s+h_i) = y(s+h_i) = c$
|
||||||
|
for all sums $s$ of subsets of $\{h_0,\ldots,h_{i-1}\}$.
|
||||||
|
To do this, find $N_i$ such that every $N_i$ consecutive
|
||||||
|
terms of $y$ contain $(y(0), \ldots, y(\sum_{j < i} h_j))$.
|
||||||
|
Then find $h_i > h_{i-1}$ such that
|
||||||
|
$(x(h_i), \ldots, x(\sum_{j < i} h_j)) = (y(0), \ldots, y(\sum_{j < i} h_j))$.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{proof}
|
}{
|
||||||
% TODO ultrafilter extension continuous
|
\begin{itemize}
|
||||||
|
\item View partition as $f\colon \N \to k$. Consider $X \coloneqq k^{\N}$ (product topology, compact and Hausdorff).
|
||||||
|
Let $x \in X$ be the given partition.
|
||||||
|
\item $T\colon X \to X$ shift: $T(y)(n) \coloneqq y(n+1)$.
|
||||||
|
\item Let $y$ proximal to $x$, uniformly recurrent.
|
||||||
|
\begin{itemize}
|
||||||
|
\item proximal $\leadsto$ $\forall N$.~$T^n(x)\defon{N} = T^n(y)\defon{N}$
|
||||||
|
for infinitely many $n$.
|
||||||
|
\item uniform recurrence $\leadsto$
|
||||||
|
\[
|
||||||
|
\forall n .~\exists N.~\forall r.y\defon{\{r,\ldots,r+N-1\}}
|
||||||
|
\text{ contains } y\defon{\{0,\ldots,n\}} \text{ as a subsequence.}
|
||||||
|
\]
|
||||||
|
(consider neighbourhood $G_n = \{z \in X : z\defon{n} = y\defon{n} \}$).
|
||||||
|
\end{itemize}
|
||||||
|
\item Consider $c \coloneqq y(0)$. This color works:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $G_0 \coloneqq y\defon{\{0\}}$,
|
||||||
|
take $N_0$ such that $y\defon{\{r, \ldots, r + N_0 - 1\}} $
|
||||||
|
contains $y(0)$ for all $r$ (unif.~recurrence).
|
||||||
|
$y\defon{\{r,\ldots,r+N_0 - 1\} } = x\defon{\{r,\ldots,r+N_0 -1\} }$
|
||||||
|
for infinitely many $r$ (proximality).
|
||||||
|
Fix $h_0 \in \N$ such that $x(h_0) = y(0)$.
|
||||||
|
\item $G_1 \coloneqq y\defon{\{0,\ldots,h_0\} }$,
|
||||||
|
take $N_1$ such that $y\defon{\{r,\ldots,r +N_1-1\}}$
|
||||||
|
contains $y\defon{\{0,\ldots,h_0\} }$
|
||||||
|
for all $r$ (unif.~recurrence).
|
||||||
|
So among ever $N_1$ terms, there are two of distance $h_0$
|
||||||
|
where $y$ has value $c$.
|
||||||
|
So $\exists h_1 > h_0$ such that $x(h_1) = x(h_1 + h_0) = c$
|
||||||
|
(proximality).
|
||||||
|
|
||||||
|
\item Repeat:
|
||||||
|
Choose $h_i$ such that
|
||||||
|
for all sums $s$ of subsets of $\{h_0,\ldots, h_{i-1}\}$,
|
||||||
|
$x(s+h_i) = y(s+h_i) = c$:
|
||||||
|
Find $N_i$ such that every $N_i$ consecutive
|
||||||
|
terms of $y$ contain a segment that coincides
|
||||||
|
with the initial segment of $y$
|
||||||
|
up to the largest $s$,
|
||||||
|
then find a segment of length $N_i$ beyond $h_{i-1}$
|
||||||
|
where $x$ and $y$ coincide.
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
|
\end{refproof}
|
||||||
|
|
||||||
In order to prove \yaref{thm:unifrprox},
|
In order to prove \yaref{thm:unifrprox},
|
||||||
we need the following:
|
we need to rephrase the problem in terms of $\beta\N$:
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
\label{thm:unifrprox:helper}
|
\label{thm:unifrprox:helper}
|
||||||
Let $X$ be a compact Hausdorff space. % ?
|
Let $X$ be a compact Hausdorff space. % ?
|
||||||
Let $T\colon X \to X$ be continuous.
|
Let $T\colon X \to X$ be continuous.
|
||||||
Let us rephrase the problem in terms of $\beta\N$:
|
|
||||||
\todo{remove duplicate}
|
|
||||||
\begin{enumerate}[(1)]
|
\begin{enumerate}[(1)]
|
||||||
\item $x \in X$ is recurrent
|
\item $x \in X$ is recurrent
|
||||||
iff $T^\cU(x) = x$ for some $\cU \in \beta\N \setminus \N$.
|
iff $T^\cU(x) = x$ for some $\cU \in \beta\N \setminus \N$.
|
||||||
|
@ -161,7 +211,7 @@ we need the following:
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
|
||||||
|
\gist{%
|
||||||
\begin{refproof}{thm:unifrprox:helper}[sketch]
|
\begin{refproof}{thm:unifrprox:helper}[sketch]
|
||||||
We only prove (2) here, as it is the most interesting point.%
|
We only prove (2) here, as it is the most interesting point.%
|
||||||
\todo{other parts will be in the official notes}
|
\todo{other parts will be in the official notes}
|
||||||
|
@ -176,7 +226,7 @@ we need the following:
|
||||||
|
|
||||||
Let $M$ be such that
|
Let $M$ be such that
|
||||||
\[
|
\[
|
||||||
\forall n .¨ \exists k < M.~T^{n+k}(x) \in G.
|
\forall n .~ \exists k < M.~T^{n+k}(x) \in G.
|
||||||
\]
|
\]
|
||||||
So there is a $k < M$ such that
|
So there is a $k < M$ such that
|
||||||
\[
|
\[
|
||||||
|
@ -212,3 +262,4 @@ we need the following:
|
||||||
|
|
||||||
\phantom\qedhere
|
\phantom\qedhere
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
}{}
|
||||||
|
|
|
@ -2,6 +2,7 @@
|
||||||
|
|
||||||
|
|
||||||
\begin{refproof}{thm:unifrprox:helper}
|
\begin{refproof}{thm:unifrprox:helper}
|
||||||
|
\gist{%
|
||||||
\begin{subproof}[(2), $\impliedby$, sketch]
|
\begin{subproof}[(2), $\impliedby$, sketch]
|
||||||
Assume that $x $ is not uniformly recurrent.
|
Assume that $x $ is not uniformly recurrent.
|
||||||
Then there is a neighbourhood $G \ni x$
|
Then there is a neighbourhood $G \ni x$
|
||||||
|
@ -41,7 +42,18 @@
|
||||||
% TODO Why? Think about this.
|
% TODO Why? Think about this.
|
||||||
|
|
||||||
\end{subproof}
|
\end{subproof}
|
||||||
|
}{%
|
||||||
|
\begin{itemize}
|
||||||
|
\item 2, $\implies$:
|
||||||
|
\begin{itemize}
|
||||||
|
\item TODO
|
||||||
|
\end{itemize}
|
||||||
|
\item 2, $\impliedby$:
|
||||||
|
\begin{itemize}
|
||||||
|
\item TODO
|
||||||
|
\end{itemize}
|
||||||
|
\end{itemize}
|
||||||
|
}
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
Take $X = \beta\N$,
|
Take $X = \beta\N$,
|
||||||
$S \colon \beta\N \to \beta\N$,
|
$S \colon \beta\N \to \beta\N$,
|
||||||
|
@ -51,7 +63,6 @@ Then
|
||||||
S^\cV(\cU) = \ulim{\cV}_n S^n(\cU) = \ulim{\cV}_n(\hat{n} + \cU) =
|
S^\cV(\cU) = \ulim{\cV}_n S^n(\cU) = \ulim{\cV}_n(\hat{n} + \cU) =
|
||||||
\ulim{\cV}_n \hat{n} + \cU = \cV + \cU.
|
\ulim{\cV}_n \hat{n} + \cU = \cV + \cU.
|
||||||
\]
|
\]
|
||||||
% TODO check
|
|
||||||
|
|
||||||
\begin{corollary}
|
\begin{corollary}
|
||||||
$\cU$ is recurrent
|
$\cU$ is recurrent
|
||||||
|
@ -175,12 +186,10 @@ S^\cV(\cU) = \ulim{\cV}_n S^n(\cU) = \ulim{\cV}_n(\hat{n} + \cU) =
|
||||||
Then $\cU + \cU = \cW + \cV + \cU = \cU$.
|
Then $\cU + \cU = \cW + \cV + \cU = \cU$.
|
||||||
|
|
||||||
(2) $\implies$ (3):
|
(2) $\implies$ (3):
|
||||||
\todo{TODO}
|
Let $\cU$ be an idempotent.
|
||||||
% TODO
|
Then $\cV + \cU = \cV$ (proximal to $0$)
|
||||||
% Let $\cU$ be an idempotent.
|
and $\cV + \cU = \cU$ (recurrent)
|
||||||
% We want to find $\cV$ such that $\cV + \cU = \cU$.
|
are satisfied for $\cV \coloneqq \cU$.
|
||||||
% $\cV'$ such that $\cV' + \cU = \cV' + 0$ proximal to $0$?
|
|
||||||
% TAKE $\cV = \cV' = \cU$.
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{corollary}
|
\begin{corollary}
|
||||||
|
|
Loading…
Reference in a new issue