This commit is contained in:
parent
ca0594ea69
commit
de4897f59a
2 changed files with 213 additions and 0 deletions
212
inputs/lecture_17.tex
Normal file
212
inputs/lecture_17.tex
Normal file
|
@ -0,0 +1,212 @@
|
|||
\lecture{17}{2023-12-12}{The Ellis semigroup}
|
||||
|
||||
|
||||
\subsection{The Ellis semigroup}
|
||||
|
||||
Let $(X, d)$ be a compact metric space
|
||||
and $(X, T)$ a flow.
|
||||
|
||||
Let $X^{X} \coloneqq \{f\colon X \to X\}$
|
||||
be the set of all functions.\footnote{We take all the functions,
|
||||
they need not be continuous.}
|
||||
We equip this with the product topology,
|
||||
i.e.~a subbasis
|
||||
is given by sets
|
||||
\[
|
||||
U_{\epsilon}(x,y) \coloneqq \{f \in X^X : d(x,f(y)) < \epsilon\}.
|
||||
\]
|
||||
for all $x,y \in X$, $\epsilon > 0$.
|
||||
|
||||
$X^{X}$ is a compact Hausdorff space.
|
||||
\begin{remark}
|
||||
\todo{Copy from exercise sheet 10}
|
||||
Let $f_0 \in X^X$ be fixed.
|
||||
\begin{itemize}
|
||||
\item $X^X \ni f \mapsto f \circ f_0$
|
||||
is continuous:
|
||||
|
||||
Consider $\{f : f f_0 \in U_{\epsilon}(x,y)\}$.
|
||||
We have $ff_0 \in U_{\epsilon}(x,y)$
|
||||
iff $f \in U_\epsilon(x,f_0(y))$.
|
||||
\item Fix $x_0 \in X$.
|
||||
Then $f \mapsto f(x)$ is continuous.
|
||||
\item In general $f \mapsto f_0 \circ f$ is not continuous,
|
||||
but if $f_0$ is continuous, then the map is continuous.
|
||||
\end{itemize}
|
||||
\end{remark}
|
||||
|
||||
\begin{definition}
|
||||
Let $(X,T)$ be a flow.
|
||||
Then the \vocab{Ellis semigroup}
|
||||
is defined by
|
||||
$E(X,T) \coloneqq \overline{T} \subseteq X^X$,
|
||||
i.e.~identify $T$ with $x \mapsto tx$
|
||||
and take the closure in $X^X$.
|
||||
\end{definition}
|
||||
$E(X,T)$ is compact and Hausdorff,
|
||||
since $X^X$ has these properties.
|
||||
|
||||
Properties of $(X,T)$ translate to
|
||||
\begin{goal}
|
||||
We want to show that if $(X,T)$ is distal,
|
||||
then $E(X,T)$ is a group.
|
||||
\end{goal}
|
||||
|
||||
\begin{proposition}
|
||||
$G$ is a semigroup,
|
||||
i.e.~closed under composition.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
Take $t \in T$. We want to show that $tG \subseteq G$,
|
||||
i.e.~for all $h \in G$ we have $th \in G$.
|
||||
|
||||
We have that $t^{-1}G$ is compact,
|
||||
since $t^{-1}$ is continuous
|
||||
and $G$ is compact.
|
||||
|
||||
Then $T \subseteq t^{-1}G$ since $T \ni s = t^{-1}\underbrace{(ts)}_{\in G}$.
|
||||
So $G = \overline{T} \subseteq t^{-1}G$.
|
||||
Hence $tG \subseteq G$.
|
||||
|
||||
\begin{claim}
|
||||
If $g \in G$, then
|
||||
\[
|
||||
\overline{T} g = \overline{Tg}.
|
||||
\]
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
\todo{Homework}
|
||||
\end{subproof}
|
||||
|
||||
Let $g \in G$.
|
||||
We need to show that $Gg \subseteq G$.
|
||||
|
||||
It is
|
||||
\[
|
||||
Gg = \overline{T}g = \overline{Tg}.
|
||||
\]
|
||||
Since $G$ compact,
|
||||
and $Tg \subseteq G$,
|
||||
we have $ \overline{Tg} \subseteq G$.
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}
|
||||
A \vocab{compact semigroup} $S$
|
||||
is a nonempty semigroup with a compact
|
||||
Hausdorff topology,
|
||||
such that $S \ni x \mapsto xs$ is continuous for all $s$.
|
||||
\end{definition}
|
||||
\begin{example}
|
||||
Ellis semigroup is a compact semigroup.
|
||||
\end{example}
|
||||
|
||||
\begin{lemma}[Ellis–Numakura]
|
||||
\yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura}
|
||||
Every compact semigroup
|
||||
contains an \vocab{idempotent} element,
|
||||
i.e.~$f$ such that $f^2 = f$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Using Zorn's lemma, take a $\subseteq$-minimal
|
||||
compact subsemigroup $R$ of $S$
|
||||
and let $s \in R$.
|
||||
|
||||
Then $Rs$ is also a compact subsemigroup
|
||||
and $Rs \subseteq R$.
|
||||
By minimality of $R$, $R = Rs$.
|
||||
Let $P \coloneqq \{ x \in R : xs = s\}$.
|
||||
Then $P \neq \emptyset$,
|
||||
since $s \in Rs$
|
||||
and $P$ is a compact semigroup,
|
||||
since $x \overset{\alpha}\mapsto xs$
|
||||
is continuous and $P = \alpha^-1(s) \cap R$.
|
||||
Thus $P = R$ by minimality,
|
||||
so $s \in P$,
|
||||
i.e.~$s^2 = s$.
|
||||
\end{proof}
|
||||
|
||||
The \yaref{lem:ellisnumakura} is not very interesting for $E(X,T)$,
|
||||
since we already know that it has an identity,
|
||||
in fact we have chosen $R = \{1\}$ in the proof.
|
||||
But it is interesting for other semigroups.
|
||||
|
||||
|
||||
\begin{theorem}[Ellis]
|
||||
$(X,T)$ is distal iff $E(X,T)$ is a group.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
|
||||
Let $G \coloneqq E(X,T)$.
|
||||
Let $d$ be a metric on $X$.
|
||||
|
||||
For all $g \in G$ we need to show that $x \mapsto gx$ is bijective.
|
||||
If we had $gx = gy$, then $d(gx,gy) = 0$.
|
||||
Then $\inf d(tx,ty) = 0$, but the flow is distal,
|
||||
hence $x = y$.
|
||||
|
||||
Let $g \in G$. Consider the compact semigroup $\Gamma \coloneqq Gg$.
|
||||
By the \yaref{lem:ellisnumakura},
|
||||
there is $f \in \Gamma$ such that $f^2 = f$,
|
||||
i.e.~for all $x \in X$ we have $f^2(x) = f(x)$.
|
||||
Since $f$ is injective, we get that $x = f(x)$,
|
||||
i.e.~$f = \id$.
|
||||
|
||||
Take $g' \in G$ such that $f = g' \circ g$.%
|
||||
%\footnote{This exists since $f \in Gg$.}
|
||||
|
||||
It is $g' = g'gg'$,
|
||||
so $\forall x .~g'(x) = g'(g g'(x))$.
|
||||
Hence $g'$ is bijective
|
||||
and $x = gg'(x)$,
|
||||
i.e.~$g g' = \id$.
|
||||
|
||||
\todo{The other direction is left as an easy exercise.}
|
||||
\end{proof}
|
||||
|
||||
Let $(X,T)$ be a flow.
|
||||
Then by Zorn's lemma, there exists $X_0 \subseteq X$
|
||||
such that $(X_0, T)$ is minimal.
|
||||
In particular,
|
||||
for $x \in X$ and $\overline{Tx} = Y$
|
||||
we have that $(Y,T)$ is a flow.
|
||||
However if we pick $y \in Y$, $Ty$ might not be dense.
|
||||
% TODO: think about this!
|
||||
% We want to a minimal subflow in a nice way:
|
||||
|
||||
\begin{theorem}
|
||||
If $(X,T)$ is distal, then $X$ is the disjoint union of minimal subflows.
|
||||
In fact those disjoint sets
|
||||
will be orbits of $E(X,T)$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
Let $G = E(X,T)$.
|
||||
Note that for all $x \in X$,
|
||||
we have $Gx \subseteq X$ is compact
|
||||
and invariant under the action of $G$.
|
||||
|
||||
Since $G$ is a group, we have that the orbits partition $X$.%
|
||||
\footnote{Note that in general this does not hold for semigroups.}
|
||||
|
||||
% Clearly the sets $Gx$ cover $X$. We want to show that they
|
||||
% partition $X$.
|
||||
% It suffices to show that $y \in Gx \implies Gy = Gx$.
|
||||
|
||||
% Take some $y \in Gx$.
|
||||
% Recall that $\overline{Ty} = \overline{T} y = Gy$.
|
||||
% We have $\overline{Ty} \subseteq Gx$,
|
||||
% so $Gy \subseteq Gx$.
|
||||
% Since $y = g_0 x \implies x = g_0^{-1}y$, we also have $x \in Gy$,
|
||||
% hence $Gx \subseteq Gy$
|
||||
\end{proof}
|
||||
\begin{corollary}
|
||||
If $(X,T)$ is distal and minimal,
|
||||
then $E(X,T) \acts X$ is transitive.
|
||||
\end{corollary}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -41,6 +41,7 @@
|
|||
\input{inputs/lecture_14}
|
||||
\input{inputs/lecture_15}
|
||||
\input{inputs/lecture_16}
|
||||
\input{inputs/lecture_17}
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue