This commit is contained in:
parent
4c0c7730f1
commit
dd99d09b1c
3 changed files with 54 additions and 15 deletions
|
@ -135,6 +135,7 @@ coordinates.
|
|||
$x \mapsto x^{n}$.
|
||||
\end{definition}
|
||||
|
||||
\gist{%
|
||||
\begin{remark}
|
||||
\label{rem:l20:sigma}
|
||||
Note that for
|
||||
|
@ -149,6 +150,7 @@ coordinates.
|
|||
(y, x_{d+1}) &\longmapsto & (\tau_d(y), \sigma(y) x_{d+1}).
|
||||
\end{IEEEeqnarray*}
|
||||
\end{remark}
|
||||
}{}
|
||||
\begin{theorem}
|
||||
\label{thm:taudminimal:help}
|
||||
For every $d$ if $\tau_d$\footnote{more formally $((S^1)^d, \langle \tau_d \rangle)$}
|
||||
|
@ -166,11 +168,14 @@ coordinates.
|
|||
$\tau$ is minimal.
|
||||
\end{corollary}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
We need to show that every orbit is dense.
|
||||
This follows from the definition of the product topology,
|
||||
since for a basic open set $U = U_1 \times \ldots \times U_d \times (S^1)^{\infty}$
|
||||
it suffices to analyze the first $d$ coordinates.
|
||||
}{We need to show that every orbit is dense. For this it suffices to analyze finitely many coordinates.}
|
||||
\end{proof}
|
||||
|
||||
\gist{%
|
||||
\begin{refproof}{thm:taudminimal:help}
|
||||
Let $S \coloneqq \tau_d$, $T \coloneqq \tau_{d+1}$ and $Y \coloneqq (S^1)^d$.
|
||||
Consider
|
||||
|
@ -193,8 +198,5 @@ coordinates.
|
|||
|
||||
\phantom\qedhere
|
||||
\end{refproof}
|
||||
|
||||
|
||||
|
||||
|
||||
}{}
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
\lecture{21}{2024-01-12}{Iterated Skew Shift}
|
||||
|
||||
\begin{refproof}{thm:taudminimal:help}
|
||||
\gist{%
|
||||
Suppose towards a contradiction that
|
||||
$Y \times S^1$ contains a proper minimal subflow $Z$.
|
||||
Consider the projection $\pi\colon Y \times S^1 \to Y$.
|
||||
|
@ -77,6 +78,41 @@
|
|||
so $[\phi \circ S \circ \gamma] = [\phi \circ \gamma]$.
|
||||
Thus $[x \mapsto (\sigma(\gamma(x))^n] = 0$,
|
||||
but that is a contradiction to (b) $\lightning$
|
||||
}{
|
||||
\begin{itemize}
|
||||
\item $S \coloneqq \tau_d$, $T \coloneqq \tau_{d+1}$
|
||||
($T(y, \xi) = (S(y), \sigma(y) + \xi)$),
|
||||
$Y \coloneqq (S^1)^d$,
|
||||
$\gamma: S^1 \to Y, x \mapsto (x,x,\ldots,x)$.
|
||||
\item (a) $\gamma \simeq S \circ \gamma$.
|
||||
\item (b) $\forall m \in \Z.~ [m \cdot \sigma \circ \gamma] = m$
|
||||
($\sigma(\gamma(x)) = x$).
|
||||
\item Suppose $Y \times S^1$ is not minimal.
|
||||
Let $Z$ be a proper minimal subflow,
|
||||
$\pi\colon Y \times S^1 \to Y$.
|
||||
\item $\pi(Z) = Y$ ($Y$ minimal)
|
||||
\item $Z + (0,\ldots,0,\theta)$ is minimal, so $\theta + Z = Z$
|
||||
or $\theta + Z \cap Z = \emptyset$.
|
||||
\item $H \coloneqq \{\theta \in S^1 : \theta + Z = Z\}$ (closed subgroup of $S^1$).
|
||||
\begin{itemize}
|
||||
\item $H \neq S^1$ as $Z$ is a proper subflow.
|
||||
\item $H = \langle \frac{1}{m} \rangle$.
|
||||
\end{itemize}
|
||||
\item $(y, \beta) \in Z$, then $(y, \beta + t) \in Z \iff m \cdot t = 0$.
|
||||
Pick $\beta^{(y)}$ such that $(y, \xi) \in Z \iff \xi \in \{\beta^{(y)} + \frac{n}{m} : n \in \N\}$.
|
||||
\item Consider $(y, \xi) \mapsto (y, m \cdot \xi)$.
|
||||
Get
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\phi\colon Y &\longrightarrow & S^1 \\
|
||||
y &\longmapsto & m \beta^{(y)}
|
||||
\end{IEEEeqnarray*}
|
||||
continuous.
|
||||
\item $\phi \circ S = m \cdot \phi \circ \sigma$:
|
||||
$Z$ is $T$-invariant.
|
||||
\item $[\phi \circ S \circ \gamma] = [\phi \circ \gamma] + [m \sigma \circ \gamma]$
|
||||
$\implies [m \sigma \circ \gamma] = 0 \lightning$.
|
||||
\end{itemize}
|
||||
}
|
||||
\end{refproof}
|
||||
|
||||
Let $X_n \coloneqq (S^1)^n$ and $X \coloneqq (S^1)^{\N}$.
|
||||
|
|
|
@ -103,7 +103,7 @@ For this we define
|
|||
\end{pmatrix*}
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
|
||||
\gist{%
|
||||
\begin{example}
|
||||
Consider the following flow:
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
|
@ -121,10 +121,12 @@ For this we define
|
|||
\end{IEEEeqnarray*}
|
||||
we can write this as $\tau(x,y,z) = (x \cdot f_1 \circ \pi_1(x,y,z), y \cdot f_2\pi_2(x,y,z), z \cdot f_3\pi_3(x,y,z))$
|
||||
\end{example}
|
||||
% \begin{example}
|
||||
% The skew shift can be written in this form as well:
|
||||
% TODO
|
||||
% \end{example}
|
||||
\begin{example}
|
||||
The skew shift can be written in this form as well.
|
||||
Consider $f_1\colon x \mapsto \alpha$
|
||||
and $f_n\colon (x_0,\ldots, x_{n-2}) \mapsto x_{n-2}$.
|
||||
\end{example}
|
||||
}{}
|
||||
|
||||
\begin{theorem}[Beleznay Foreman]
|
||||
\label{thm:distalminimalofallranks}
|
||||
|
@ -143,9 +145,8 @@ For this we define
|
|||
For all $\overline{f} \in \mathbb{K}_I$,
|
||||
the flow $E_I \overline{f}$ is distal.
|
||||
This is the same as for iterated skew shifts.
|
||||
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
|
||||
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
|
||||
\item Minimality:%
|
||||
|
||||
\item Minimality:
|
||||
\notexaminable{%
|
||||
Let $\langle E_n : n < \omega \rangle$
|
||||
be an enumeration of a countable basis for $\mathbb{K}^I$.
|
||||
|
@ -156,7 +157,7 @@ For this we define
|
|||
\]
|
||||
where $f = E_I \overline{f}$ and $\overline{1} = (1,1,1,\ldots)$.
|
||||
|
||||
Beleznay and Foreman showed that $U_n$ is open
|
||||
\textsc{Beleznay} and \textsc{Foreman} showed that $U_n$ is open
|
||||
and dense for all $n$.
|
||||
|
||||
So if $\overline{f} \in \bigcap_{n} U_n$, then $\overline{1}$
|
||||
|
@ -165,7 +166,7 @@ For this we define
|
|||
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
||||
}
|
||||
|
||||
\item The order of the flow is $\eta$:%
|
||||
\item The order of the flow is $\eta$:
|
||||
\notexaminable{%
|
||||
Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
||||
Consider the flows we get from $(f_i)_{i < j}$
|
||||
|
|
Loading…
Reference in a new issue