This commit is contained in:
parent
4d1690088f
commit
dcf4851177
1 changed files with 0 additions and 74 deletions
74
anki
74
anki
|
@ -1,74 +0,0 @@
|
||||||
Hindman (Furstenberg)
|
|
||||||
|
|
||||||
[latex]
|
|
||||||
\begin{theorem}[Hindman]
|
|
||||||
\label{thm:hindman}
|
|
||||||
\label{thm:hindmanfurstenberg}
|
|
||||||
If $\N$ is partitioned into finitely many
|
|
||||||
sets,
|
|
||||||
then there is is an infinite subset $H \subseteq \N$
|
|
||||||
such that all finite sums of distinct
|
|
||||||
elements of $H$
|
|
||||||
belong to the same set of the partition.
|
|
||||||
\end{theorem}
|
|
||||||
[/latex]
|
|
||||||
Use:
|
|
||||||
[latex]
|
|
||||||
\begin{theorem}
|
|
||||||
\label{thm:unifrprox}
|
|
||||||
Let $X$ be a compact Hausdorff space and $T\colon X \to X$
|
|
||||||
continuous.
|
|
||||||
Consider $(X,T)$.%TODO different notations
|
|
||||||
Then for every $x \in X$
|
|
||||||
there is a uniformly recurrent $y \in X$
|
|
||||||
such that $y $ is proximal to $x$.
|
|
||||||
\end{theorem}
|
|
||||||
[/latex]
|
|
||||||
[latex]
|
|
||||||
\begin{refproof}{thm:hindmanfurstenberg}[Furstenberg]
|
|
||||||
\begin{itemize}
|
|
||||||
\item View partition as $f\colon \N \to k$. Consider $X \coloneqq k^{\N}$ (product topology, compact and Hausdorff).
|
|
||||||
Let $x \in X$ be the given partition.
|
|
||||||
\item $T\colon X \to X$ shift: $T(y)(n) \coloneqq y(n+1)$.
|
|
||||||
\item Let $y$ proximal to $x$, uniformly recurrent.
|
|
||||||
\begin{itemize}
|
|
||||||
\item proximal $\leadsto$ $\forall N$.~$T^n(x)\defon_N = T^n(y)\defon_N$
|
|
||||||
for infinitely many $n$.
|
|
||||||
\item uniform recurrence $\leadsto$
|
|
||||||
\[
|
|
||||||
\forall n .~\exists N.~\forall r.y\defon{\{r,\ldots,r+N-1\}}
|
|
||||||
\text{ contains } $y\defon{\{0,\ldots,n\}}$ \text{ as a subsequence.}
|
|
||||||
\]
|
|
||||||
(consider neighbourhood $G_n = \{z \in X : z\defon{n} = y\defon{n} \}$).
|
|
||||||
\end{itemize}
|
|
||||||
\item Consider $c \coloneqq y(0)$. This color works:
|
|
||||||
\begin{itemize}
|
|
||||||
\item $G_0 \coloneqq y\defon{\{0\}}$,
|
|
||||||
take $N_0$ such that $y\defon{\{r, \ldots, r + N_0 - 1\}} $
|
|
||||||
contains $y(0)$ for all $r$ (unif.~recurrence).
|
|
||||||
$y\defon{\{r,\ldots,r+N_0 - 1\} } = x\defon{\{r,\ldots,r+N_0 -1\} }$
|
|
||||||
for infinitely many $r$ (proximality).
|
|
||||||
Fix $h_0 \in \N$ such that $x(h_0) = y(0)$.
|
|
||||||
\item $G_1 \coloneqq y\defon{\{0,\ldots,h_0\} }$,
|
|
||||||
take $N_1$ such that $y\defon{\{r,\ldots,r +N_1-1\}}$
|
|
||||||
contains $y\defon{\{0,\ldots,h_0\} }$
|
|
||||||
for all $r$ (unif.~recurrence).
|
|
||||||
So among ever $N_1$ terms, there are two of distance $h_0$
|
|
||||||
where $y$ has value $c$.
|
|
||||||
So $\exists h_1 > h_0$ such that $x(h_1) = x(h_1 + h_0) = c$
|
|
||||||
(proximality).
|
|
||||||
|
|
||||||
\item Repeat:
|
|
||||||
Choose $h_i$ such that
|
|
||||||
for all sums $s$ of subsets of $\{h_0,\ldots, h_{i-1}\}$,
|
|
||||||
$x(s+h_i) = y(s+h_i) = c$:
|
|
||||||
Find $N_i$ such that every $N_i$ consecutive
|
|
||||||
terms of $y$ contain a segment that coincides
|
|
||||||
with the initial segment of $y$
|
|
||||||
up to the largest $s$,
|
|
||||||
then find a segment of length $N_i$ beyond $h_{i-1}$
|
|
||||||
where $x$ and $y$ coincide.
|
|
||||||
\end{itemize}
|
|
||||||
\end{itemize}
|
|
||||||
\end{refproof}
|
|
||||||
[/latex]
|
|
Loading…
Reference in a new issue