This commit is contained in:
parent
c03a62f638
commit
d22cc2f282
3 changed files with 103 additions and 89 deletions
|
@ -1,4 +1,5 @@
|
|||
\lecture{13}{2023-11-08}{}
|
||||
|
||||
\gist{%
|
||||
% Recap
|
||||
$\LO = \{x \in 2^{\N\times \N} : x \text{ is a linear order}\} $.
|
||||
|
@ -124,7 +125,8 @@ with $(f^{-1}(\{1\}), <)$.
|
|||
and $f$ is continuous.
|
||||
\end{proof}
|
||||
|
||||
% TODO: new section?
|
||||
\subsection{$\Pi_1^1$-ranks}
|
||||
|
||||
\gist{%
|
||||
Recall that a \vocab{rank} on a set $C$
|
||||
is a map $\phi\colon C \to \Ord$.
|
||||
|
|
|
@ -1,11 +1,11 @@
|
|||
\lecture{14}{2023-12-01}{}
|
||||
|
||||
% TODO ANKI-MARKER
|
||||
\begin{theorem}[Moschovakis]
|
||||
If $C$ is coanalytic,
|
||||
then there exists a $\Pi^1_1$-rank on $C$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
Pick a $\Pi^1_1$-complete set.
|
||||
It suffices to show that there is a rank on it.
|
||||
Then use the reduction to transfer
|
||||
|
@ -16,32 +16,37 @@
|
|||
x \le^{\ast}_{C'} y :\iff f(x) \le^\ast_{C} f(y)
|
||||
\]
|
||||
and similarly for $<^\ast$.
|
||||
% https://q.uiver.app/#q=WzAsNSxbMCwwLCJZIl0sWzIsMCwiWCJdLFswLDEsIkMnIl0sWzIsMSwiQyJdLFsyLDIsIlxcUGlfMV4xLVxcdGV4dHtjb21wbGV0ZX0iXSxbMCwxLCJmIl0sWzIsMCwiXFxzdWJzZXRlcSIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzMsMSwiXFxzdWJzZXRlcSIsMix7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV1d
|
||||
\[\begin{tikzcd}
|
||||
Y && X \\
|
||||
{C'} && C \\
|
||||
&& {\Pi_1^1-\text{complete}}
|
||||
\arrow["f", from=1-1, to=1-3]
|
||||
\arrow["\subseteq", hook, from=2-1, to=1-1]
|
||||
\arrow["\subseteq"', hook, from=2-3, to=1-3]
|
||||
\end{tikzcd}\]
|
||||
|
||||
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJZIl0sWzIsMCwiWCJdLFswLDEsIkMnIl0sWzIsMSwiXFxiZWdpbnthcnJheX17Y31DXFxcXFxcUGlfMV4xLVxcdGV4dHtjb21wbGV0ZX1cXGVuZHthcnJheX0iXSxbMCwxLCJmIl0sWzIsMCwiXFxzdWJzZXRlcSIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzMsMSwiXFxzdWJzZXRlcSIsMix7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV1d
|
||||
\begin{tikzcd}
|
||||
Y && X \\
|
||||
{C'} && {\begin{array}{c}C\\\Pi_1^1-\text{complete}\end{array}}
|
||||
\arrow["f", from=1-1, to=1-3]
|
||||
\arrow["\subseteq", hook, from=2-1, to=1-1]
|
||||
\arrow["\subseteq"', hook, from=2-3, to=1-3]
|
||||
\end{tikzcd}
|
||||
Let $X = 2^{\Q} \supseteq \WO$.
|
||||
We have already show that $\WO$ is $\Pi^1_1$-complete.
|
||||
|
||||
Set $\phi(x) \coloneqq \otp(x)$
|
||||
($\otp\colon \WO \to \Ord$ denotes the order type).
|
||||
We show that this is a $\Pi^1_1$-rank.
|
||||
|
||||
}{%
|
||||
It suffices to show this for a $\Pi^1_1$-complete set.
|
||||
We show that $\phi \coloneqq \otp$ is a
|
||||
$\Pi^1_1$-rank for $\WO \subseteq 2^{\Q}$.
|
||||
}
|
||||
Define $E \subseteq \Q^{\Q} \times 2^{\Q} \times 2^{\Q}$
|
||||
by
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
(f,x,y) \in E &:\iff& f \text{ order embeds $(x, \le_{\Q})$ to $(y,\le _{\Q})$}\\
|
||||
&\iff& \forall p,q \in \Q.~(p,q \in x \land p <_{\Q} q \implies f(p), f(q) \in y \land f(p) <_{\Q} f(q))
|
||||
\begin{IEEEeqnarray*}{Cl}
|
||||
& (f,x,y) \in E\\
|
||||
:\iff& f \text{ order embeds $(x, \le_{\Q})$ to $(y,\le _{\Q})$}\\
|
||||
\iff& \forall p,q \in \Q.~(p,q \in x \land p <_{\Q} q \implies f(p), f(q) \in y \land f(p) <_{\Q} f(q))
|
||||
\end{IEEEeqnarray*}
|
||||
$E$ is Borel as a countable intersection of clopen sets.
|
||||
$E$ is Borel\gist{ as a countable intersection of clopen sets}{}.
|
||||
|
||||
Define
|
||||
$x <^\ast_{\phi}$
|
||||
$x <^\ast_{\phi} y$
|
||||
iff
|
||||
\begin{itemize}
|
||||
\item $(x, <_{\Q})$ is well ordered and
|
||||
|
@ -51,8 +56,9 @@
|
|||
This is equivalent to
|
||||
\begin{itemize}
|
||||
\item $x \in \WO$ and
|
||||
\item $\forall f \in \Q^\Q.~(f,y,x) \not\in E$.
|
||||
\item $\forall f \in \Q^\Q.~(f,y,x) \not\in E$,
|
||||
\end{itemize}
|
||||
so it is $\Pi^1_1$.
|
||||
|
||||
Furthermore $x \le_\phi^\ast y \iff$
|
||||
either $x <^\ast_\phi y$ or
|
||||
|
@ -61,12 +67,11 @@
|
|||
i.e.~either $x<^\ast_\phi y$ or
|
||||
$x,y \in \WO$ and any order embedding of $(x,<_{\Q})$ to
|
||||
$(y, <_{\Q})$ is cofinal%
|
||||
\footnote{%
|
||||
\gist{\footnote{%
|
||||
Recall that $A \subseteq (x,<_{\Q})$
|
||||
is \vocab{cofinal} if $\forall t \in x.~\exists a \in A.~t\le _{\Q} a$.%
|
||||
}
|
||||
in $(y, <_\Q)$ is
|
||||
cofinal in $(y, <_{\Q})$ and vice versa.
|
||||
}}{}
|
||||
in $(y, <_\Q)$ and vice versa.
|
||||
Equivalently, either $(x <^\ast_\phi y)$
|
||||
or
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
|
@ -76,7 +81,6 @@
|
|||
\end{IEEEeqnarray*}
|
||||
\end{proof}
|
||||
|
||||
|
||||
\begin{theorem}
|
||||
\label{thm:uniformization}
|
||||
Let $X$ be Polish and $R \subseteq X \times \N$ by $\Pi^1_1$
|
||||
|
@ -88,7 +92,6 @@
|
|||
\]
|
||||
We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.%
|
||||
\footnote{Wikimedia has a \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{nice picture.}}
|
||||
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
Let $\phi\colon R \to \Ord$
|
||||
|
@ -121,18 +124,19 @@
|
|||
\end{proof}
|
||||
|
||||
Let $X$ be a Polish space.
|
||||
If $(X, \prec)$ is well founded (i.e.~there are no infinite descending chains)
|
||||
then we define a rank $\rho_{y}\colon X > \Ord$
|
||||
as follows:
|
||||
If $(X, \prec)$ is well-founded%
|
||||
\gist{ (i.e.~there are no infinite descending chains)}{}
|
||||
then we define a rank $\rho_{y}\colon X \to \Ord$ as follows:
|
||||
For minimal elements the rank is $0$.
|
||||
Otherwise set $\rho_<(x) \coloneqq \sup \{\rho_<(y) + 1 : y \prec x\}$.
|
||||
Otherwise set $\rho_\prec(x) \coloneqq \sup \{\rho_\prec(y) + 1 : y \prec x\}$.
|
||||
Let $\rho(\prec) \coloneqq \sup \{\rho_{\prec}(x) + 1 : x \in X\}$.
|
||||
|
||||
\begin{exercise}
|
||||
$\rho(\prec) \le |X|^+$ (successor cardinal).
|
||||
(for countable $<$)
|
||||
\todo{TODO}
|
||||
\end{exercise}
|
||||
% \begin{exercise}
|
||||
% $\rho(\prec) \le |X|^+$ (successor cardinal).
|
||||
% (for countable $<$)
|
||||
% \todo{TODO}
|
||||
% % TODO QUESTION
|
||||
% \end{exercise}
|
||||
\begin{theorem}[Kunen-Martin]
|
||||
\yalabel{Kunen-Martin}{Kunen-Martin}{thm:kunenmartin}
|
||||
If $(X, \prec)$ is wellfounded
|
||||
|
@ -140,12 +144,14 @@ Let $\rho(\prec) \coloneqq \sup \{\rho_{\prec}(x) + 1 : x \in X\}$.
|
|||
then $\rho(\prec) < \omega_1$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
% TODO GIST
|
||||
% TODO QUESTION where did we use analytic?
|
||||
Wlog.~$X = \cN$.
|
||||
There is a tree $S$ on $\N \times \N \times \N$
|
||||
(i.e.~$S \subseteq \cN^3$)
|
||||
(i.e.~$S \subseteq (\N \times \N \times \N)^{<\N}$)
|
||||
such that
|
||||
\[
|
||||
\forall x, y \in \cN.~\left(x \succ y \iff \exists \alpha \in \N.~(x,\alpha,y) \in [S]\right).
|
||||
\forall x, y \in \cN.~\left(x \succ y \iff \exists \alpha \in \cN.~(x,\alpha,y) \in [S]\right).
|
||||
\]
|
||||
|
||||
Let
|
||||
|
@ -154,66 +160,69 @@ Let $\rho(\prec) \coloneqq \sup \{\rho_{\prec}(x) + 1 : x \in X\}$.
|
|||
\land (s_{i-1}, u_i, s_i) \in S\}.
|
||||
\]
|
||||
|
||||
So $|W| \le \aleph_0$.
|
||||
Clearly $|W| \le \aleph_0$.
|
||||
Define $\prec^\ast$ on $W$
|
||||
by setting
|
||||
\[(s_0,u_1,s_1,\ldots, u_n,s_n) \succ (s_0',u_1', s_1', \ldots, u_m', s_m') :\iff\]
|
||||
\begin{itemize}
|
||||
\item $n < m$,
|
||||
\item $\forall i \le n.~s_i \subsetneq s_i'$ and
|
||||
\item $\forall i \le n.~u_i \subsetneq u_i'$.
|
||||
\item $n < m$ and
|
||||
\item $\forall i \le n.~s_i \subsetneq s_i' \land u_i \subsetneq u_i'$.
|
||||
%\todo{$\subseteq$ or $\subsetneq$?} % TODO QUESTION
|
||||
\end{itemize}
|
||||
\begin{claim}
|
||||
$\prec^\ast$ is well-founded.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
If $w_n = (s_0^n, u_1^n, \ldots, u_n^n, s_n^n)$
|
||||
was descending,
|
||||
then let
|
||||
\[
|
||||
x_i \coloneqq \bigcup s_i^n \in \cN
|
||||
\]
|
||||
and
|
||||
\[
|
||||
\alpha_i \coloneqq \bigcup_n u_i^n \cN.
|
||||
\]
|
||||
We get $(x_{i-1}, \alpha_i, x_i) \in [S]$,
|
||||
hence $x_{i-1} \succ x_i$ for all $i$,
|
||||
but this is an infinite descending chain
|
||||
in the original relation $\lightning$
|
||||
\gist{%
|
||||
If $w_n = (s_0^n, u_1^n, \ldots, u_n^n, s_n^n)$
|
||||
was descending,
|
||||
then let
|
||||
\[
|
||||
x_i \coloneqq \bigcup s_i^n \in \cN
|
||||
\]
|
||||
and
|
||||
\[
|
||||
\alpha_i \coloneqq \bigcup_n u_i^n \cN.
|
||||
\]
|
||||
We get $(x_{i-1}, \alpha_i, x_i) \in [S]$,
|
||||
hence $x_{i-1} \succ x_i$ for all $i$,
|
||||
but this is an infinite descending chain
|
||||
in the original relation $\lightning$
|
||||
}{%
|
||||
Use that $ \prec$ is well-founded.
|
||||
}
|
||||
\end{subproof}
|
||||
|
||||
Hence $\rho(\prec^\ast) < |W|^+ \le \omega_1$.
|
||||
% TODO QUESTION
|
||||
|
||||
We can turn $(X, \prec)$ into a tree $(T_\prec, \subsetneq)$
|
||||
with
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\rho(\prec) &=& \rho(T_{\prec})
|
||||
\end{IEEEeqnarray*}
|
||||
by setting $\emptyset \in T_{\prec}$
|
||||
and
|
||||
$(x_0,\ldots,x_n) \in T_\prec$,$x_i \in X =\cN$,
|
||||
iff $x_0 \succ x_1 \succ x_2 \succ \ldots \succ x_n$.
|
||||
|
||||
\todo{Fix typos and end proof}
|
||||
% Hence $\rho(\prec^\ast) < \omega_1$.
|
||||
%
|
||||
% We can turn $(X, \prec)$ into a tree $(T_\prec, \subsetneq)$
|
||||
% with
|
||||
% \begin{IEEEeqnarray*}{rCl}
|
||||
% \rho(\prec) &=& \rho(T_{\prec})
|
||||
% \end{IEEEeqnarray*}
|
||||
% by setting $\emptyset \in T_{\prec}$
|
||||
% and
|
||||
% $(x_0,\ldots,x_n) \in T_\prec$,$x_i \in X =\cN$,
|
||||
% iff $x_0 \succ x_1 \succ x_2 \succ \ldots \succ x_n$.
|
||||
%
|
||||
% For all $x \succ y$
|
||||
% pick $\alpha_{x,y} \in \cN$
|
||||
% such that $(x, \alpha_{x,y}, y) \in [S]$
|
||||
% define
|
||||
% \begin{IEEEeqnarray*}{rCl}
|
||||
% \phi\colon T_{\prec} &\longrightarrow & W \\
|
||||
% \phi(x_0,x_1,\ldots,x_n) &\longmapsto & (x_0\defon{n}, \alpha_{x_0}, x_1\defon{n},\ldots,
|
||||
% \alpha_{x_{n-1}}, x_n\defon{n}).
|
||||
% \end{IEEEeqnarray*}
|
||||
% Then $\phi$ is a homomorphism of $\subsetneq$ to $<^\ast$
|
||||
% and
|
||||
% \[
|
||||
% \rho(<) = \rho(T_{\prec}, \subsetneq) \le \rho(<^\ast) < \omega_1.
|
||||
% \]
|
||||
|
||||
\todo{Exercise}
|
||||
For all $x \succ y$
|
||||
pick $\alpha_{x,y} \in \cN$
|
||||
such that $(x, \alpha_{x,y}, y) \in [S]$
|
||||
define
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\phi\colon T_{\prec} \setminus \{\emptyset\} &\longrightarrow & W \\
|
||||
\phi(x_0,x_1,\ldots,x_n) &\longmapsto & (x_0\defon{n}, \alpha_{x_0}, x_1\defon{n},\ldots,
|
||||
\alpha_{x_{n-1}}, x_n\defon{n}).
|
||||
\end{IEEEeqnarray*}
|
||||
Then $\phi$ is a homomorphism of $\subsetneq$ to $\prec^\ast$
|
||||
so
|
||||
\[
|
||||
\rho(\prec)
|
||||
= \rho(T_{\prec} \setminus \{\emptyset\} , \subsetneq)
|
||||
\le \rho(\prec^\ast)
|
||||
< \omega_1.
|
||||
\]
|
||||
\end{proof}
|
||||
|
||||
|
||||
|
|
|
@ -1,5 +1,8 @@
|
|||
\lecture{15}{2023-12-05}{}
|
||||
|
||||
% TODO ANKI-MARKER
|
||||
|
||||
|
||||
\begin{theorem}[Boundedness Theorem]
|
||||
\yalabel{Boundedness Theorem}{Boundedness}{thm:boundedness}
|
||||
|
||||
|
|
Loading…
Reference in a new issue