This commit is contained in:
parent
c03a62f638
commit
d22cc2f282
3 changed files with 103 additions and 89 deletions
|
@ -1,4 +1,5 @@
|
||||||
\lecture{13}{2023-11-08}{}
|
\lecture{13}{2023-11-08}{}
|
||||||
|
|
||||||
\gist{%
|
\gist{%
|
||||||
% Recap
|
% Recap
|
||||||
$\LO = \{x \in 2^{\N\times \N} : x \text{ is a linear order}\} $.
|
$\LO = \{x \in 2^{\N\times \N} : x \text{ is a linear order}\} $.
|
||||||
|
@ -124,7 +125,8 @@ with $(f^{-1}(\{1\}), <)$.
|
||||||
and $f$ is continuous.
|
and $f$ is continuous.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
% TODO: new section?
|
\subsection{$\Pi_1^1$-ranks}
|
||||||
|
|
||||||
\gist{%
|
\gist{%
|
||||||
Recall that a \vocab{rank} on a set $C$
|
Recall that a \vocab{rank} on a set $C$
|
||||||
is a map $\phi\colon C \to \Ord$.
|
is a map $\phi\colon C \to \Ord$.
|
||||||
|
|
|
@ -1,11 +1,11 @@
|
||||||
\lecture{14}{2023-12-01}{}
|
\lecture{14}{2023-12-01}{}
|
||||||
|
|
||||||
% TODO ANKI-MARKER
|
|
||||||
\begin{theorem}[Moschovakis]
|
\begin{theorem}[Moschovakis]
|
||||||
If $C$ is coanalytic,
|
If $C$ is coanalytic,
|
||||||
then there exists a $\Pi^1_1$-rank on $C$.
|
then there exists a $\Pi^1_1$-rank on $C$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
\gist{%
|
||||||
Pick a $\Pi^1_1$-complete set.
|
Pick a $\Pi^1_1$-complete set.
|
||||||
It suffices to show that there is a rank on it.
|
It suffices to show that there is a rank on it.
|
||||||
Then use the reduction to transfer
|
Then use the reduction to transfer
|
||||||
|
@ -16,32 +16,37 @@
|
||||||
x \le^{\ast}_{C'} y :\iff f(x) \le^\ast_{C} f(y)
|
x \le^{\ast}_{C'} y :\iff f(x) \le^\ast_{C} f(y)
|
||||||
\]
|
\]
|
||||||
and similarly for $<^\ast$.
|
and similarly for $<^\ast$.
|
||||||
% https://q.uiver.app/#q=WzAsNSxbMCwwLCJZIl0sWzIsMCwiWCJdLFswLDEsIkMnIl0sWzIsMSwiQyJdLFsyLDIsIlxcUGlfMV4xLVxcdGV4dHtjb21wbGV0ZX0iXSxbMCwxLCJmIl0sWzIsMCwiXFxzdWJzZXRlcSIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzMsMSwiXFxzdWJzZXRlcSIsMix7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV1d
|
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJZIl0sWzIsMCwiWCJdLFswLDEsIkMnIl0sWzIsMSwiXFxiZWdpbnthcnJheX17Y31DXFxcXFxcUGlfMV4xLVxcdGV4dHtjb21wbGV0ZX1cXGVuZHthcnJheX0iXSxbMCwxLCJmIl0sWzIsMCwiXFxzdWJzZXRlcSIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzMsMSwiXFxzdWJzZXRlcSIsMix7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV1d
|
||||||
\[\begin{tikzcd}
|
\begin{tikzcd}
|
||||||
Y && X \\
|
Y && X \\
|
||||||
{C'} && C \\
|
{C'} && {\begin{array}{c}C\\\Pi_1^1-\text{complete}\end{array}}
|
||||||
&& {\Pi_1^1-\text{complete}}
|
\arrow["f", from=1-1, to=1-3]
|
||||||
\arrow["f", from=1-1, to=1-3]
|
\arrow["\subseteq", hook, from=2-1, to=1-1]
|
||||||
\arrow["\subseteq", hook, from=2-1, to=1-1]
|
\arrow["\subseteq"', hook, from=2-3, to=1-3]
|
||||||
\arrow["\subseteq"', hook, from=2-3, to=1-3]
|
\end{tikzcd}
|
||||||
\end{tikzcd}\]
|
|
||||||
|
|
||||||
Let $X = 2^{\Q} \supseteq \WO$.
|
Let $X = 2^{\Q} \supseteq \WO$.
|
||||||
We have already show that $\WO$ is $\Pi^1_1$-complete.
|
We have already show that $\WO$ is $\Pi^1_1$-complete.
|
||||||
|
|
||||||
Set $\phi(x) \coloneqq \otp(x)$
|
Set $\phi(x) \coloneqq \otp(x)$
|
||||||
($\otp\colon \WO \to \Ord$ denotes the order type).
|
($\otp\colon \WO \to \Ord$ denotes the order type).
|
||||||
We show that this is a $\Pi^1_1$-rank.
|
We show that this is a $\Pi^1_1$-rank.
|
||||||
|
|
||||||
|
}{%
|
||||||
|
It suffices to show this for a $\Pi^1_1$-complete set.
|
||||||
|
We show that $\phi \coloneqq \otp$ is a
|
||||||
|
$\Pi^1_1$-rank for $\WO \subseteq 2^{\Q}$.
|
||||||
|
}
|
||||||
Define $E \subseteq \Q^{\Q} \times 2^{\Q} \times 2^{\Q}$
|
Define $E \subseteq \Q^{\Q} \times 2^{\Q} \times 2^{\Q}$
|
||||||
by
|
by
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{Cl}
|
||||||
(f,x,y) \in E &:\iff& f \text{ order embeds $(x, \le_{\Q})$ to $(y,\le _{\Q})$}\\
|
& (f,x,y) \in E\\
|
||||||
&\iff& \forall p,q \in \Q.~(p,q \in x \land p <_{\Q} q \implies f(p), f(q) \in y \land f(p) <_{\Q} f(q))
|
:\iff& f \text{ order embeds $(x, \le_{\Q})$ to $(y,\le _{\Q})$}\\
|
||||||
|
\iff& \forall p,q \in \Q.~(p,q \in x \land p <_{\Q} q \implies f(p), f(q) \in y \land f(p) <_{\Q} f(q))
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
$E$ is Borel as a countable intersection of clopen sets.
|
$E$ is Borel\gist{ as a countable intersection of clopen sets}{}.
|
||||||
|
|
||||||
Define
|
Define
|
||||||
$x <^\ast_{\phi}$
|
$x <^\ast_{\phi} y$
|
||||||
iff
|
iff
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $(x, <_{\Q})$ is well ordered and
|
\item $(x, <_{\Q})$ is well ordered and
|
||||||
|
@ -51,8 +56,9 @@
|
||||||
This is equivalent to
|
This is equivalent to
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $x \in \WO$ and
|
\item $x \in \WO$ and
|
||||||
\item $\forall f \in \Q^\Q.~(f,y,x) \not\in E$.
|
\item $\forall f \in \Q^\Q.~(f,y,x) \not\in E$,
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
so it is $\Pi^1_1$.
|
||||||
|
|
||||||
Furthermore $x \le_\phi^\ast y \iff$
|
Furthermore $x \le_\phi^\ast y \iff$
|
||||||
either $x <^\ast_\phi y$ or
|
either $x <^\ast_\phi y$ or
|
||||||
|
@ -61,12 +67,11 @@
|
||||||
i.e.~either $x<^\ast_\phi y$ or
|
i.e.~either $x<^\ast_\phi y$ or
|
||||||
$x,y \in \WO$ and any order embedding of $(x,<_{\Q})$ to
|
$x,y \in \WO$ and any order embedding of $(x,<_{\Q})$ to
|
||||||
$(y, <_{\Q})$ is cofinal%
|
$(y, <_{\Q})$ is cofinal%
|
||||||
\footnote{%
|
\gist{\footnote{%
|
||||||
Recall that $A \subseteq (x,<_{\Q})$
|
Recall that $A \subseteq (x,<_{\Q})$
|
||||||
is \vocab{cofinal} if $\forall t \in x.~\exists a \in A.~t\le _{\Q} a$.%
|
is \vocab{cofinal} if $\forall t \in x.~\exists a \in A.~t\le _{\Q} a$.%
|
||||||
}
|
}}{}
|
||||||
in $(y, <_\Q)$ is
|
in $(y, <_\Q)$ and vice versa.
|
||||||
cofinal in $(y, <_{\Q})$ and vice versa.
|
|
||||||
Equivalently, either $(x <^\ast_\phi y)$
|
Equivalently, either $(x <^\ast_\phi y)$
|
||||||
or
|
or
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
@ -76,7 +81,6 @@
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
\label{thm:uniformization}
|
\label{thm:uniformization}
|
||||||
Let $X$ be Polish and $R \subseteq X \times \N$ by $\Pi^1_1$
|
Let $X$ be Polish and $R \subseteq X \times \N$ by $\Pi^1_1$
|
||||||
|
@ -88,7 +92,6 @@
|
||||||
\]
|
\]
|
||||||
We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.%
|
We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.%
|
||||||
\footnote{Wikimedia has a \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{nice picture.}}
|
\footnote{Wikimedia has a \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{nice picture.}}
|
||||||
|
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Let $\phi\colon R \to \Ord$
|
Let $\phi\colon R \to \Ord$
|
||||||
|
@ -121,18 +124,19 @@
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
Let $X$ be a Polish space.
|
Let $X$ be a Polish space.
|
||||||
If $(X, \prec)$ is well founded (i.e.~there are no infinite descending chains)
|
If $(X, \prec)$ is well-founded%
|
||||||
then we define a rank $\rho_{y}\colon X > \Ord$
|
\gist{ (i.e.~there are no infinite descending chains)}{}
|
||||||
as follows:
|
then we define a rank $\rho_{y}\colon X \to \Ord$ as follows:
|
||||||
For minimal elements the rank is $0$.
|
For minimal elements the rank is $0$.
|
||||||
Otherwise set $\rho_<(x) \coloneqq \sup \{\rho_<(y) + 1 : y \prec x\}$.
|
Otherwise set $\rho_\prec(x) \coloneqq \sup \{\rho_\prec(y) + 1 : y \prec x\}$.
|
||||||
Let $\rho(\prec) \coloneqq \sup \{\rho_{\prec}(x) + 1 : x \in X\}$.
|
Let $\rho(\prec) \coloneqq \sup \{\rho_{\prec}(x) + 1 : x \in X\}$.
|
||||||
|
|
||||||
\begin{exercise}
|
% \begin{exercise}
|
||||||
$\rho(\prec) \le |X|^+$ (successor cardinal).
|
% $\rho(\prec) \le |X|^+$ (successor cardinal).
|
||||||
(for countable $<$)
|
% (for countable $<$)
|
||||||
\todo{TODO}
|
% \todo{TODO}
|
||||||
\end{exercise}
|
% % TODO QUESTION
|
||||||
|
% \end{exercise}
|
||||||
\begin{theorem}[Kunen-Martin]
|
\begin{theorem}[Kunen-Martin]
|
||||||
\yalabel{Kunen-Martin}{Kunen-Martin}{thm:kunenmartin}
|
\yalabel{Kunen-Martin}{Kunen-Martin}{thm:kunenmartin}
|
||||||
If $(X, \prec)$ is wellfounded
|
If $(X, \prec)$ is wellfounded
|
||||||
|
@ -140,12 +144,14 @@ Let $\rho(\prec) \coloneqq \sup \{\rho_{\prec}(x) + 1 : x \in X\}$.
|
||||||
then $\rho(\prec) < \omega_1$.
|
then $\rho(\prec) < \omega_1$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
% TODO GIST
|
||||||
|
% TODO QUESTION where did we use analytic?
|
||||||
Wlog.~$X = \cN$.
|
Wlog.~$X = \cN$.
|
||||||
There is a tree $S$ on $\N \times \N \times \N$
|
There is a tree $S$ on $\N \times \N \times \N$
|
||||||
(i.e.~$S \subseteq \cN^3$)
|
(i.e.~$S \subseteq (\N \times \N \times \N)^{<\N}$)
|
||||||
such that
|
such that
|
||||||
\[
|
\[
|
||||||
\forall x, y \in \cN.~\left(x \succ y \iff \exists \alpha \in \N.~(x,\alpha,y) \in [S]\right).
|
\forall x, y \in \cN.~\left(x \succ y \iff \exists \alpha \in \cN.~(x,\alpha,y) \in [S]\right).
|
||||||
\]
|
\]
|
||||||
|
|
||||||
Let
|
Let
|
||||||
|
@ -154,66 +160,69 @@ Let $\rho(\prec) \coloneqq \sup \{\rho_{\prec}(x) + 1 : x \in X\}$.
|
||||||
\land (s_{i-1}, u_i, s_i) \in S\}.
|
\land (s_{i-1}, u_i, s_i) \in S\}.
|
||||||
\]
|
\]
|
||||||
|
|
||||||
So $|W| \le \aleph_0$.
|
Clearly $|W| \le \aleph_0$.
|
||||||
Define $\prec^\ast$ on $W$
|
Define $\prec^\ast$ on $W$
|
||||||
by setting
|
by setting
|
||||||
\[(s_0,u_1,s_1,\ldots, u_n,s_n) \succ (s_0',u_1', s_1', \ldots, u_m', s_m') :\iff\]
|
\[(s_0,u_1,s_1,\ldots, u_n,s_n) \succ (s_0',u_1', s_1', \ldots, u_m', s_m') :\iff\]
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $n < m$,
|
\item $n < m$ and
|
||||||
\item $\forall i \le n.~s_i \subsetneq s_i'$ and
|
\item $\forall i \le n.~s_i \subsetneq s_i' \land u_i \subsetneq u_i'$.
|
||||||
\item $\forall i \le n.~u_i \subsetneq u_i'$.
|
%\todo{$\subseteq$ or $\subsetneq$?} % TODO QUESTION
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
$\prec^\ast$ is well-founded.
|
$\prec^\ast$ is well-founded.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{subproof}
|
\begin{subproof}
|
||||||
If $w_n = (s_0^n, u_1^n, \ldots, u_n^n, s_n^n)$
|
\gist{%
|
||||||
was descending,
|
If $w_n = (s_0^n, u_1^n, \ldots, u_n^n, s_n^n)$
|
||||||
then let
|
was descending,
|
||||||
\[
|
then let
|
||||||
x_i \coloneqq \bigcup s_i^n \in \cN
|
\[
|
||||||
\]
|
x_i \coloneqq \bigcup s_i^n \in \cN
|
||||||
and
|
\]
|
||||||
\[
|
and
|
||||||
\alpha_i \coloneqq \bigcup_n u_i^n \cN.
|
\[
|
||||||
\]
|
\alpha_i \coloneqq \bigcup_n u_i^n \cN.
|
||||||
We get $(x_{i-1}, \alpha_i, x_i) \in [S]$,
|
\]
|
||||||
hence $x_{i-1} \succ x_i$ for all $i$,
|
We get $(x_{i-1}, \alpha_i, x_i) \in [S]$,
|
||||||
but this is an infinite descending chain
|
hence $x_{i-1} \succ x_i$ for all $i$,
|
||||||
in the original relation $\lightning$
|
but this is an infinite descending chain
|
||||||
|
in the original relation $\lightning$
|
||||||
|
}{%
|
||||||
|
Use that $ \prec$ is well-founded.
|
||||||
|
}
|
||||||
\end{subproof}
|
\end{subproof}
|
||||||
|
|
||||||
|
Hence $\rho(\prec^\ast) < |W|^+ \le \omega_1$.
|
||||||
|
% TODO QUESTION
|
||||||
|
|
||||||
|
We can turn $(X, \prec)$ into a tree $(T_\prec, \subsetneq)$
|
||||||
|
with
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
\rho(\prec) &=& \rho(T_{\prec})
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
by setting $\emptyset \in T_{\prec}$
|
||||||
|
and
|
||||||
|
$(x_0,\ldots,x_n) \in T_\prec$,$x_i \in X =\cN$,
|
||||||
|
iff $x_0 \succ x_1 \succ x_2 \succ \ldots \succ x_n$.
|
||||||
|
|
||||||
\todo{Fix typos and end proof}
|
For all $x \succ y$
|
||||||
% Hence $\rho(\prec^\ast) < \omega_1$.
|
pick $\alpha_{x,y} \in \cN$
|
||||||
%
|
such that $(x, \alpha_{x,y}, y) \in [S]$
|
||||||
% We can turn $(X, \prec)$ into a tree $(T_\prec, \subsetneq)$
|
define
|
||||||
% with
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
% \begin{IEEEeqnarray*}{rCl}
|
\phi\colon T_{\prec} \setminus \{\emptyset\} &\longrightarrow & W \\
|
||||||
% \rho(\prec) &=& \rho(T_{\prec})
|
\phi(x_0,x_1,\ldots,x_n) &\longmapsto & (x_0\defon{n}, \alpha_{x_0}, x_1\defon{n},\ldots,
|
||||||
% \end{IEEEeqnarray*}
|
\alpha_{x_{n-1}}, x_n\defon{n}).
|
||||||
% by setting $\emptyset \in T_{\prec}$
|
\end{IEEEeqnarray*}
|
||||||
% and
|
Then $\phi$ is a homomorphism of $\subsetneq$ to $\prec^\ast$
|
||||||
% $(x_0,\ldots,x_n) \in T_\prec$,$x_i \in X =\cN$,
|
so
|
||||||
% iff $x_0 \succ x_1 \succ x_2 \succ \ldots \succ x_n$.
|
\[
|
||||||
%
|
\rho(\prec)
|
||||||
% For all $x \succ y$
|
= \rho(T_{\prec} \setminus \{\emptyset\} , \subsetneq)
|
||||||
% pick $\alpha_{x,y} \in \cN$
|
\le \rho(\prec^\ast)
|
||||||
% such that $(x, \alpha_{x,y}, y) \in [S]$
|
< \omega_1.
|
||||||
% define
|
\]
|
||||||
% \begin{IEEEeqnarray*}{rCl}
|
|
||||||
% \phi\colon T_{\prec} &\longrightarrow & W \\
|
|
||||||
% \phi(x_0,x_1,\ldots,x_n) &\longmapsto & (x_0\defon{n}, \alpha_{x_0}, x_1\defon{n},\ldots,
|
|
||||||
% \alpha_{x_{n-1}}, x_n\defon{n}).
|
|
||||||
% \end{IEEEeqnarray*}
|
|
||||||
% Then $\phi$ is a homomorphism of $\subsetneq$ to $<^\ast$
|
|
||||||
% and
|
|
||||||
% \[
|
|
||||||
% \rho(<) = \rho(T_{\prec}, \subsetneq) \le \rho(<^\ast) < \omega_1.
|
|
||||||
% \]
|
|
||||||
|
|
||||||
\todo{Exercise}
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,8 @@
|
||||||
\lecture{15}{2023-12-05}{}
|
\lecture{15}{2023-12-05}{}
|
||||||
|
|
||||||
|
% TODO ANKI-MARKER
|
||||||
|
|
||||||
|
|
||||||
\begin{theorem}[Boundedness Theorem]
|
\begin{theorem}[Boundedness Theorem]
|
||||||
\yalabel{Boundedness Theorem}{Boundedness}{thm:boundedness}
|
\yalabel{Boundedness Theorem}{Boundedness}{thm:boundedness}
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue