lecture 20
This commit is contained in:
parent
e7a325bac8
commit
cf5a26ec93
5 changed files with 313 additions and 4 deletions
|
@ -15,6 +15,7 @@ sketch of \yaref{thm:l16:3} in the case of $|Z| = 1$.
|
|||
Let $(X,T)$ be a distal flow.
|
||||
Then $G \coloneqq E(X,T)$ is a group.
|
||||
\begin{definition}
|
||||
\label{def:F}
|
||||
For $x, x' \in X$ define
|
||||
\[
|
||||
F(x,x') \coloneqq \inf \{d(gx, gx') : g \in G\}.
|
||||
|
|
|
@ -274,6 +274,7 @@ More generally we can show:
|
|||
$(X'_{\xi+1}, T)$ is a factor of $(X_{\xi+1}, T)$.
|
||||
\end{proof}
|
||||
\begin{example}[{\cite[p. 513]{Furstenberg}}]
|
||||
\label{ex:19:inftorus}
|
||||
Let $X$ be the infinite torus
|
||||
\[
|
||||
X \coloneqq \{(\xi_1, \xi_2, \ldots) : \xi_i \in \C, |\xi_i| = 1\}.
|
||||
|
|
196
inputs/lecture_20.tex
Normal file
196
inputs/lecture_20.tex
Normal file
|
@ -0,0 +1,196 @@
|
|||
\lecture{20}{2024-01-09}{The infinite Torus}
|
||||
|
||||
\begin{example}
|
||||
\footnote{This is the same as \yaref{ex:19:inftorus},
|
||||
but with new notation.}
|
||||
Let $X = (S^1)^{\N}$\footnote{We identify $S^1$ and $\faktor{\R}{\Z}$.}
|
||||
and consider $\left(X, \Z \right)$
|
||||
where the action is generated by
|
||||
\[
|
||||
\tau\colon (x_1,x_2,x_3,\ldots) \mapsto(x_1 + \alpha, x_1 + x_2, x_2 + x_3, \ldots)
|
||||
\]
|
||||
for some irrational $\alpha$.
|
||||
\end{example}
|
||||
\begin{remark}+
|
||||
Note that we can identify $S^1$ with a subset of $\C$ (and use multiplication)
|
||||
or with $\faktor{\R}{\Z}$ (and use addition).
|
||||
In the lecture both notations were used.% to make things extra confusing.
|
||||
Here I'll try to only use multiplicative notation.
|
||||
\end{remark}
|
||||
We will be studying projections to the first $d$ coordinates,
|
||||
i.e.
|
||||
\[
|
||||
\tau_d \colon (x_1,\ldots,x_d) \mapsto (e^{\i \alpha} x_1, x_1x_2, \ldots, x_{d-1}x_d).
|
||||
\]
|
||||
$\tau_d$ is called the \vocab{$d$-skew shift}.
|
||||
For $d = 1$ we get the circle rotation $x \mapsto e^{\i \alpha} x$.
|
||||
\begin{fact}
|
||||
\label{fact:tau1minimal}
|
||||
The circle rotation $x \mapsto e^{\i \alpha} x$ is minimal.
|
||||
In fact, every subgroup of $S^1$ is either dense in $S^1$
|
||||
or it is of the form
|
||||
\[
|
||||
H_m \coloneqq \{x \in S^1 : x^m = 0\}
|
||||
\]
|
||||
for some $m \in \Z$.
|
||||
\end{fact}
|
||||
\todo{Homework!}
|
||||
We will show that $\tau_d$ is minimal for all $d$,
|
||||
i.e.~every orbit is dense.
|
||||
From this it will follow that $\tau$ is minimal.
|
||||
|
||||
Let $\pi_n\colon X \to (S^1)^n$ be the projection to the first $n$
|
||||
coordinates.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{lemma}
|
||||
Let $x,x' \in X$ with $\pi_n(x) = \pi_n(x')$
|
||||
for some $n$.
|
||||
Then there is a sequence of points $x_k$ with
|
||||
\[\pi_{n-1}(x_k) = \pi_{n-1}(x) = \pi_{n-1}(x')\]
|
||||
for all $k$
|
||||
and
|
||||
\[
|
||||
F(x_k, x) \xrightarrow{k \to \infty} 0,
|
||||
F(x_k, x') \xrightarrow{k \to \infty} 0,
|
||||
\]
|
||||
where $F$ is as in \yaref{def:F},
|
||||
i.e.~$F(a,b) = \inf_{n \in \Z} d(\tau^n a, \tau^n b)$,
|
||||
where $d$ is the metric on $X$,
|
||||
$d((x_i), (y_i)) = \max_n \frac{1}{2^n} | x_n - y_n|$.% TODO use multiplicative notation
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Let
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
x &=& (\alpha^0_1, \alpha^0_2, \ldots, \alpha^0_{n-1}, \alpha_n, \alpha_{n+1}, \alpha_{n+2},\ldots)\\
|
||||
x' &=& (\alpha^0_1, \alpha^0_2, \ldots, \alpha^0_{n-1}, \alpha_n, \alpha'_{n+1}, \alpha'_{n+2},\ldots).\\
|
||||
\end{IEEEeqnarray*}
|
||||
We will choose $x_k$ of the form
|
||||
\[
|
||||
(\alpha^0_1, \alpha^0_2, \ldots, \alpha^0_{n-1} \alpha_n e^{\i \beta_k}, \alpha_{n+1}, \alpha_{n+2}, \ldots),
|
||||
\]
|
||||
where $\beta_k$ is such that $\frac{\beta_k}{\pi}$ is irrational
|
||||
and $|\beta_k| < 2^{-k}$.
|
||||
Fix a sequence of such $\beta_k$.
|
||||
Then
|
||||
\[d(x_k,x) = 2^{-n} |e^{\i \beta_k} - 1| < 2^{-n-k} \xrightarrow{k\to \infty} 0.\]
|
||||
In particular $F(x_k, x) \to 0$.
|
||||
|
||||
We want to show that $F(x_k, x') < 2^{-n-k}$.
|
||||
For $u, u' \in X$,
|
||||
$u = (\xi_n)_{n \in \N}$,
|
||||
$u' = (\xi'_n)_{n \in \N}$,
|
||||
let $\frac{u}{u'} = (\frac{\xi_n}{\xi'_n})_{n \in \N}$
|
||||
($X$ is a group).
|
||||
|
||||
We are interested in $F(x_k, x') = \inf_m d(\tau^m x_k, \tau^m x')$,
|
||||
but it is easier to consider the distance between
|
||||
their quotient and $1$.
|
||||
Consider
|
||||
\[
|
||||
w_k \coloneqq \frac{x_k}{x'} = (\underbrace{1,\ldots,1}_{n-1}, e^{\i \beta_k}, \overbrace{\frac{\alpha_{n+1}}{\alpha'_{n+1}}, \frac{\alpha_{n+2}}{\alpha'_{n+2}}, \ldots}^{\mathclap{\text{not interesting}}}).
|
||||
\]
|
||||
\begin{claim}
|
||||
$F(x_k, x') = \inf_m d(\sigma^m(w_k), 1)$,
|
||||
where $\sigma(\xi_1, \xi_2, \ldots) = (\xi_1, \xi_1\xi_2, \xi_2\xi_3, \ldots)$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
We have
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
F(u,u') &=& \inf_m d(\tau^m u, \tau^m u')\\
|
||||
&=& \inf_m d(\frac{\tau^m u}{\tau^m u'}, 1)\\
|
||||
&=& \inf_m d(\sigma^m\left( \frac{u}{u'} \right), 1).
|
||||
\end{IEEEeqnarray*}
|
||||
\end{subproof}
|
||||
|
||||
Fix $k$. Let $w^\ast = (1,\ldots,1, e^{\i \beta_k}, 1, \ldots)$.
|
||||
By minimality of $(X,T)$ for any $\epsilon >0$,
|
||||
there exists $m \in \Z$ such that
|
||||
$d(\sigma^m w_k, w^\ast) < \epsilon$.
|
||||
% TODO Think about this
|
||||
Then
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\inf_m d(\sigma^m w_k, 1) &\le & \inf_m d(\sigma^m w_k, w^\ast) + d(w^\ast, 1)\\
|
||||
&\le & 2^{-n} | e^{\i \beta_k}- 1|\\
|
||||
&<& 2^{-n-k}.
|
||||
\end{IEEEeqnarray*}
|
||||
\end{proof}
|
||||
|
||||
|
||||
\begin{definition}
|
||||
For every continuous $f\colon S^1 \to S^1$, the
|
||||
\vocab{winding number} $[f] \in \Z$
|
||||
is the unique integer such that $f$ is homotopic%
|
||||
\footnote{$f\colon Y \to Z$ and $g\colon Y \to Z$ are homotopic
|
||||
iff there is $H\colon Y \times [0,1] \to \Z$
|
||||
continuous such that $H(\cdot ,0) = f$ and $H(\cdot ,1) = g$.}
|
||||
to the map
|
||||
$x \mapsto x^{n}$.
|
||||
\end{definition}
|
||||
|
||||
\begin{remark}
|
||||
Note that for
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\sigma\colon (S^1)^d &\longrightarrow & S^1 \\
|
||||
(x_1,\ldots,x_d) &\longmapsto & x_d
|
||||
\end{IEEEeqnarray*}
|
||||
we have that $T = \tau_{d+1}$,
|
||||
where
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
T\colon (S^1)^d \times S^1 &\longrightarrow & (S^1)^d \times S^1 \\
|
||||
(y, x_{d+1}) &\longmapsto & (\tau_d(y), \sigma(y) x_{d+1}).
|
||||
\end{IEEEeqnarray*}
|
||||
\end{remark}
|
||||
\begin{theorem}
|
||||
\label{thm:taudminimal:help}
|
||||
For every $d$ if $\tau_d$\footnote{more formally $((S^1)^d, \langle \tau_d \rangle)$}
|
||||
is minimal, then $\tau_{d+1}$ is minimal.
|
||||
\end{theorem}
|
||||
\begin{corollary}
|
||||
$\tau_d$ is minimal for all $d$.
|
||||
\end{corollary}
|
||||
\begin{proof}
|
||||
$\tau_1$ is minimal (\yaref{fact:tau1minimal}).
|
||||
Apply \yaref{thm:taudminimal:help}.
|
||||
\end{proof}
|
||||
\begin{corollary}
|
||||
Since all the $\tau_d$ are minimal,
|
||||
$\tau$ is minimal.
|
||||
\end{corollary}
|
||||
\begin{proof}
|
||||
This follows from the definition of the product topology,
|
||||
since for a basic open set $U = U_1 \times \ldots \times U_d \times (S^1)^{\infty}$
|
||||
it suffices to analyze the first $d$ coordinates.
|
||||
\end{proof}
|
||||
|
||||
\begin{refproof}{thm:taudminimal:help}
|
||||
Let $s \coloneqq \tau_d$ and $Y \coloneqq (S^1)^d$.
|
||||
Consider
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\gamma\colon S^1 &\longrightarrow & Y \\
|
||||
x &\longmapsto & (x,x,\ldots,x)
|
||||
\end{IEEEeqnarray*}
|
||||
\begin{enumerate}[(a)]
|
||||
\item $\gamma$ and $s \circ \gamma$ are homotopic
|
||||
via
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
H\colon S^1 \times [0,1] &\longrightarrow & (S^1)^d \\
|
||||
(x, t)&\longmapsto & (x e^{\i t \alpha}, x^{t+1}, x^{t+1}, x^{t+1},\ldots, x^{t+1})
|
||||
\end{IEEEeqnarray*}
|
||||
\item For all $m \in \Z \setminus \{0\}$, we have
|
||||
$[x \mapsto \left(\sigma(\gamma(x))\right)^m] = m \neq 0$,
|
||||
since $\sigma(\gamma(x)) = \sigma((x,\ldots,x)) = x$.
|
||||
\end{enumerate}
|
||||
|
||||
[to be continued]
|
||||
\phantom\qedhere
|
||||
|
||||
\end{refproof}
|
||||
|
||||
|
||||
|
||||
|
||||
|
113
inputs/tutorial_11.tex
Normal file
113
inputs/tutorial_11.tex
Normal file
|
@ -0,0 +1,113 @@
|
|||
\tutorial{11}{2024-01-09}{}
|
||||
|
||||
An equivalent definition of subflows can be given as follows:
|
||||
\begin{definition}
|
||||
Let $(X,T)$ be a flow with action $\alpha_x$.
|
||||
Let $Y \subseteq X$ be a compact subspace of $X$.
|
||||
If $Y$ is invariant under $\alpha_x$, we say that
|
||||
$(Y,T)$ (with action $\alpha_x\defon{T \times Y}$
|
||||
is a subflow of $(X,T)$.
|
||||
\end{definition}
|
||||
|
||||
\begin{example}[Flows with a non-closed orbit]
|
||||
\begin{enumerate}[1.]
|
||||
\item Consider $(S^1, \Z)$
|
||||
with action given by $1 \cdot x = x + c$ for
|
||||
a fixed $c \in \R\setminus\Q$.\footnote{We identify $S^1$ and $\faktor{\R}{\Z}$.}
|
||||
Then the orbit of $0$, $\{nc : n \in \Z\}$ is dense but consists only of irrationals
|
||||
(except $0$),
|
||||
so it is not closed.
|
||||
\item Consider $(S^1, \Q)$ with action $qx \coloneqq x + q$.
|
||||
The orbit of $0$, $\faktor{\Q}{\Z} \subseteq S^1$,
|
||||
is dense but not closed.
|
||||
|
||||
$(S^1,\Q)$ is minimal.
|
||||
\end{enumerate}
|
||||
\end{example}
|
||||
\begin{example}[\vocab{Left Bernoulli shift}]
|
||||
Consider $(\{0,1\}^{\Z}, T)$,
|
||||
where $T = \Z$ and the action is given by
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\Z \times \{0,1\}^{\Z}&\longrightarrow & \Z \\
|
||||
(m, (x_n)_{n \in \Z})&\longmapsto & (x_{n+m})_{n \in \Z}.
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
The orbit of $z \coloneqq (0)_{n \in \Z}$ consist of only on point.
|
||||
In particular it is closed.
|
||||
|
||||
Let $x \coloneqq ( [n = 0])_{n \in \Z}$.
|
||||
Then $Tx = \{([n = m])_{n \in \Z} | m \in \Z\}$.
|
||||
Clearly $z \not\in Tx$.
|
||||
\begin{claim}
|
||||
$z \in \overline{Tx}$
|
||||
\end{claim}
|
||||
\begin{proof}
|
||||
Consider a basic open $z \in U_I = \{y : y_i = 0, i \in I\}$
|
||||
where $I \subseteq \Z$ is finite.
|
||||
Then $U_I \cap Tx \neq \emptyset$
|
||||
as we can shift the $1$ out of $I$,
|
||||
i.e.~$(\max I + 1) x \in U_I$.
|
||||
\end{proof}
|
||||
\end{example}
|
||||
|
||||
Flows are always on non-empty spaces $X$.
|
||||
\begin{fact}
|
||||
Consider a flow $(X,T)$.
|
||||
The following are equivalent:
|
||||
\begin{enumerate}[(i)]
|
||||
\item Every $T$-orbit is dense.
|
||||
\item There is no proper subflow,
|
||||
\end{enumerate}
|
||||
If these conditions hold, the flow is called \vocab{minimal}.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
(i) $\implies$ (ii):
|
||||
Let $(Y,T)$ be a subflow of $(X,T)$.
|
||||
take $y \in Y$. Then $Ty$ is dense in mKX.
|
||||
But $Ty \subseteq Y$, so $Y$ is dense in $X$.
|
||||
Since $Y$ is closed, we get $Y = X$.
|
||||
|
||||
(ii) $\implies$ (i):
|
||||
Take $x \in X$. Consider $Tx$.
|
||||
It suffices to show that $\overline{Tx}$ is a subflow.
|
||||
Clearly $\overline{Tx}$ is closed,
|
||||
so it suffices to show that it is $T$-invariant.
|
||||
Let $y \in \overline{Tx}$ and $t \in T$.
|
||||
Take $ty \in U \overset{\text{open}}{\subseteq} X$.
|
||||
Since $t^{-1}$ acts as a homeomorphism
|
||||
we have $y \in t^{-1} U \overset{\text{open}}{\subseteq} X$.
|
||||
We find some $t'x \in t^{-1}U$ since $y \in \overline{Tx}$.
|
||||
So $tt'x \in Tx \cap U$.
|
||||
\end{proof}
|
||||
|
||||
\begin{fact}
|
||||
Every flow $(X,T)$ contains a minimal subflow.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
We use Zorn's lemma:
|
||||
Let $S$ be the set of all subflows of $(X,T)$
|
||||
ordered by $Y \le Y' :\iff Y \supseteq Y'$.
|
||||
We need to show that for a chain $\langle Y_i : i \in I \rangle$,
|
||||
there exists a lower bound.
|
||||
Consider $\bigcap_{i \in I} Y_i$. This a subflow:
|
||||
\begin{itemize}
|
||||
\item It is closed as it is an intersection of closed sets.
|
||||
\item It is $T$-invariant, since each of the $Y_i$ is.
|
||||
\item It is non-empty by \yaref{tut10fact}.
|
||||
\end{itemize}
|
||||
\end{proof}
|
||||
\begin{fact}
|
||||
\label{tut10fact}
|
||||
Let $X$ be a topological space.
|
||||
Then $X$ is compact iff every family of closed sets with
|
||||
FIP\footnote{finite intersection property, i.e.~the intersection of every finite sub-family is non-empty}
|
||||
has non-empty intersection.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
Note that families of
|
||||
closed sets correspond to families of open sets by taking complements.
|
||||
A family of open sets is a cover iff the corresponding family
|
||||
has empty intersection,
|
||||
and is admits a finite subcover iff the corresponding family
|
||||
has the FIP.
|
||||
\end{proof}
|
|
@ -44,10 +44,7 @@
|
|||
\input{inputs/lecture_17}
|
||||
\input{inputs/lecture_18}
|
||||
\input{inputs/lecture_19}
|
||||
|
||||
|
||||
|
||||
|
||||
\input{inputs/lecture_20}
|
||||
|
||||
\cleardoublepage
|
||||
|
||||
|
@ -64,6 +61,7 @@
|
|||
\input{inputs/tutorial_08}
|
||||
\input{inputs/tutorial_09}
|
||||
\input{inputs/tutorial_10}
|
||||
\input{inputs/tutorial_11}
|
||||
|
||||
\section{Facts}
|
||||
\input{inputs/facts}
|
||||
|
|
Loading…
Reference in a new issue