gist for lectures 1-4
Some checks failed
Build latex and deploy / checkout (push) Failing after 1m4s
Some checks failed
Build latex and deploy / checkout (push) Failing after 1m4s
This commit is contained in:
parent
0a14244eb3
commit
c986475c77
9 changed files with 264 additions and 217 deletions
|
@ -76,7 +76,7 @@ However the converse of this does not hold.
|
|||
\end{itemize}
|
||||
\end{fact}
|
||||
\begin{fact}
|
||||
Compact\footnote{It is not clear whether compact means compact and Hausdorff in this lecture.} Hausdorff spaces are \vocab{normal} (T4)
|
||||
Compact Hausdorff spaces are \vocab{normal} (T4)
|
||||
i.e.~two disjoint closed subsets can be separated
|
||||
by open sets.
|
||||
\end{fact}
|
||||
|
@ -114,7 +114,7 @@ However the converse of this does not hold.
|
|||
\end{absolutelynopagebreak}
|
||||
|
||||
\subsection{Some facts about polish spaces}
|
||||
|
||||
\gist{%
|
||||
\begin{fact}
|
||||
Let $(X, \tau)$ be a topological space.
|
||||
Let $d$ be a metric on $X$.
|
||||
|
@ -130,9 +130,10 @@ To show that $\tau_d = \tau_{d'}$
|
|||
for two metrics $d, d'$,
|
||||
suffices to show that open balls in one metric are unions of open balls in the other.
|
||||
\end{fact}
|
||||
}{}
|
||||
|
||||
\begin{notation}
|
||||
We sometimes denote $\min(a,b)$ by $a \wedge b$.
|
||||
We sometimes\footnote{only in this subsection?} denote $\min(a,b)$ by $a \wedge b$.
|
||||
\end{notation}
|
||||
|
||||
\begin{proposition}
|
||||
|
@ -142,6 +143,7 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
|||
|
||||
Then $d' \coloneqq \min(d,1)$ is also a metric compatible with $\tau$.
|
||||
\end{proposition}
|
||||
\gist{%
|
||||
\begin{proof}
|
||||
To check the triangle inequality:
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
|
@ -154,6 +156,7 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
|||
|
||||
Since $d$ is complete, we have that $d'$ is complete.
|
||||
\end{proof}
|
||||
}{}
|
||||
\begin{proposition}
|
||||
Let $A$ be a Polish space.
|
||||
Then $A^{\omega}$ Polish.
|
||||
|
@ -252,15 +255,15 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
|||
\begin{proposition}
|
||||
Closed subspaces of Polish spaces are Polish.
|
||||
\end{proposition}
|
||||
\gist{}{
|
||||
\gist{%
|
||||
\begin{proof}
|
||||
Let $X$ be Polish and $V \subseteq X$ closed.
|
||||
Let $d$ be a complete metric on $X$.
|
||||
Then $d\defon{V}$ is complete.
|
||||
Subspaces of second countable spaces
|
||||
are second countable.
|
||||
\end{proof}
|
||||
}
|
||||
\end{proof}%
|
||||
}{}
|
||||
|
||||
\begin{definition}
|
||||
Let $X$ be a topological space.
|
||||
|
|
|
@ -72,41 +72,51 @@
|
|||
\[d_1((x_1,y_1), (x_2, y_2)) \coloneqq d(x_1,x_2) + |y_1 - y_2|\]
|
||||
metric is complete.
|
||||
|
||||
$f_U$ is an embedding of $U$ into $X \times \R$\gist{:
|
||||
\begin{itemize}
|
||||
\item It is injective because of the first coordinate.
|
||||
\item It is continuous since $d(x, U^c)$ is continuous
|
||||
and only takes strictly positive values. % TODO
|
||||
\item The inverse is continuous because projections
|
||||
are continuous.
|
||||
\end{itemize}
|
||||
}{.}
|
||||
$f_U$ is an embedding of $U$ into $X \times \R$%
|
||||
\gist{:
|
||||
\begin{itemize}
|
||||
\item It is injective because of the first coordinate.
|
||||
\item It is continuous since $d(x, U^c)$ is continuous
|
||||
and only takes strictly positive values. % TODO
|
||||
\item The inverse is continuous because projections
|
||||
are continuous.
|
||||
\end{itemize}
|
||||
}{.}
|
||||
|
||||
So we have shown that $U$ and
|
||||
the graph of $\tilde{f_U}\colon x \mapsto \frac{1}{d(x, U^c)}$
|
||||
are homeomorphic.
|
||||
The graph is closed \gist{in $U \times \R$,
|
||||
because $\tilde{f_U}$ is continuous.
|
||||
It is closed}{} in $X \times \R$ \gist{because
|
||||
$\tilde{f_U} \to \infty$ for $d(x, U^c) \to 0$}{}.
|
||||
\todo{Make this precise}
|
||||
\gist{%
|
||||
So we have shown that $U$ and
|
||||
the graph of $\tilde{f_U}\colon x \mapsto \frac{1}{d(x, U^c)}$
|
||||
are homeomorphic.
|
||||
The graph is closed \gist{in $U \times \R$,
|
||||
because $\tilde{f_U}$ is continuous.
|
||||
It is closed}{} in $X \times \R$ \gist{because
|
||||
$\tilde{f_U} \to \infty$ for $d(x, U^c) \to 0$}{}.
|
||||
\todo{Make this precise}
|
||||
|
||||
Therefore we identified $U$ with a closed subspace of
|
||||
the Polish space $(X \times \R, d_1)$.
|
||||
}{%
|
||||
So $U \cong \mathop{Graph}(x \mapsto \frac{1}{d(x, U^c)})$
|
||||
and the RHS is a close subspace of the Polish space
|
||||
$(X \times \R, d_1)$.
|
||||
}
|
||||
|
||||
Therefore we identified $U$ with a closed subspace of
|
||||
the Polish space $(X \times \R, d_1)$.
|
||||
\end{refproof}
|
||||
|
||||
Let $Y = \bigcap_{n \in \N} U_n$ be $G_{\delta}$.
|
||||
Take
|
||||
Consider
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
f_Y\colon Y &\longrightarrow & X \times \R^{\N} \\
|
||||
x &\longmapsto &
|
||||
\left(x, \left( \frac{1}{\delta(x,U_n^c)} \right)_{n \in \N}\right)
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
As for an open $U$, $f_Y$ is an embedding.
|
||||
Since $X \times \R^{\N}$
|
||||
is completely metrizable,
|
||||
so is the closed set $f_Y(Y) \subseteq X \times \R^\N$.
|
||||
\gist{
|
||||
As for an open $U$, $f_Y$ is an embedding.
|
||||
Since $X \times \R^{\N}$
|
||||
is completely metrizable,
|
||||
so is the closed set $f_Y(Y) \subseteq X \times \R^\N$.
|
||||
}{}
|
||||
|
||||
\begin{claim}
|
||||
\label{psubspacegdelta:c2}
|
||||
|
@ -123,36 +133,35 @@
|
|||
\item $\diam_d(U) \le \frac{1}{n}$,
|
||||
\item $\diam_{d_Y}(U \cap Y) \le \frac{1}{n}$.
|
||||
\end{enumerate}
|
||||
\gist{
|
||||
We want to show that $Y = \bigcap_{n \in \N} V_n$.
|
||||
For $x \in Y$, $n \in \N$ we have $x \in V_n$,
|
||||
as we can choose two neighbourhoods
|
||||
$U_1$ (open in $Y)$ and $U_2$ (open in $X$ ) of $x$,
|
||||
such that $\diam_{d_Y}(U) < \frac{1}{n}$
|
||||
and $U_2 \cap Y = U_1$.
|
||||
Additionally choose $x \in U_3$ open in $X$
|
||||
with $\diam_{d}(U_3) < \frac{1}{n}$.
|
||||
Then consider $U_2 \cap U_3 \subseteq V_n$.
|
||||
Hence $Y \subseteq \bigcap_{n \in \N} V_n$.
|
||||
\gist{%
|
||||
We want to show that $Y = \bigcap_{n \in \N} V_n$.
|
||||
For $x \in Y$, $n \in \N$ we have $x \in V_n$,
|
||||
as we can choose two neighbourhoods
|
||||
$U_1$ (open in $Y)$ and $U_2$ (open in $X$ ) of $x$,
|
||||
such that $\diam_{d_Y}(U) < \frac{1}{n}$
|
||||
and $U_2 \cap Y = U_1$.
|
||||
Additionally choose $x \in U_3$ open in $X$
|
||||
with $\diam_{d}(U_3) < \frac{1}{n}$.
|
||||
Then consider $U_2 \cap U_3 \subseteq V_n$.
|
||||
Hence $Y \subseteq \bigcap_{n \in \N} V_n$.
|
||||
|
||||
Now let $x \in \bigcap_{n \in \N} V_n$.
|
||||
For each $n$ pick $x \in U_n \subseteq X$ open
|
||||
satisfying (i), (ii), (iii).
|
||||
From (i) and (ii) it follows that $x \in \overline{Y}$,
|
||||
since we can consider a sequence of points $y_n \in U_n \cap Y$
|
||||
and get $y_n \xrightarrow{d} x$.
|
||||
For all $n$ we have that $U_n' \coloneqq U_1 \cap \ldots \cap U_n$
|
||||
is an open set containing $x$,
|
||||
hence $U_n' \cap Y \neq \emptyset$.
|
||||
Thus we may assume that the $U_i$ form a decreasing sequence.
|
||||
We have that $\diam_{d_Y}(U_n \cap Y) \le \frac{1}{n}$.
|
||||
If follows that the $y_n$ form a Cauchy sequence with respect to $d_Y$,
|
||||
since $\diam(U_n \cap Y) \xrightarrow{d_Y} 0$
|
||||
and thus $\diam(\overline{U_n \cap Y}) \xrightarrow{d_Y} 0$.
|
||||
The sequence $y_n$ converges to the unique point in
|
||||
$\bigcap_{n} \overline{U_n \cap Y}$.
|
||||
Since the topologies agree, this point is $x$.
|
||||
}{Then $Y = \bigcap_n U_n$.}
|
||||
Now let $x \in \bigcap_{n \in \N} V_n$.
|
||||
For each $n$ pick $x \in U_n \subseteq X$ open
|
||||
satisfying (i), (ii), (iii).
|
||||
From (i) and (ii) it follows that $x \in \overline{Y}$,
|
||||
since we can consider a sequence of points $y_n \in U_n \cap Y$
|
||||
and get $y_n \xrightarrow{d} x$.
|
||||
For all $n$ we have that $U_n' \coloneqq U_1 \cap \ldots \cap U_n$
|
||||
is an open set containing $x$,
|
||||
hence $U_n' \cap Y \neq \emptyset$.
|
||||
Thus we may assume that the $U_i$ form a decreasing sequence.
|
||||
We have that $\diam_{d_Y}(U_n \cap Y) \le \frac{1}{n}$.
|
||||
If follows that the $y_n$ form a Cauchy sequence with respect to $d_Y$,
|
||||
since $\diam(U_n \cap Y) \xrightarrow{d_Y} 0$
|
||||
and thus $\diam(\overline{U_n \cap Y}) \xrightarrow{d_Y} 0$.
|
||||
The sequence $y_n$ converges to the unique point in
|
||||
$\bigcap_{n} \overline{U_n \cap Y}$.
|
||||
Since the topologies agree, this point is $x$.
|
||||
}{Then $Y = \bigcap_n U_n$.}
|
||||
\end{refproof}
|
||||
\end{refproof}
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
\subsection{Trees}
|
||||
|
||||
|
||||
\gist{%
|
||||
\begin{notation}
|
||||
Let $A \neq \emptyset$, $n \in \N$.
|
||||
Then
|
||||
|
@ -59,6 +59,7 @@
|
|||
define extension, initial segments
|
||||
and concatenation of a finite sequence with an infinite one.
|
||||
\end{notation}
|
||||
}{}
|
||||
|
||||
\begin{definition}
|
||||
A \vocab{tree}
|
||||
|
@ -127,16 +128,19 @@
|
|||
|
||||
We define $U_s$ inductively on the length of $s$.
|
||||
|
||||
For $U_{\emptyset}$ take any non-empty open set
|
||||
with small enough diameter.
|
||||
\gist{%
|
||||
For $U_{\emptyset}$ take any non-empty open set
|
||||
with small enough diameter.
|
||||
|
||||
Given $U_s$, pick $x \neq y \in U_s$
|
||||
and let $U_{s \concat 0} \ni x$,
|
||||
$U_{s \concat 1} \ni y$
|
||||
be disjoint, open,
|
||||
of diameter $\le \frac{1}{2^{|s| +1}}$
|
||||
and such that $\overline{U_{s\concat 0}}, \overline{U_{S \concat 1}} \subseteq U_s$.
|
||||
Given $U_s$, pick $x \neq y \in U_s$
|
||||
and let $U_{s \concat 0} \ni x$,
|
||||
$U_{s \concat 1} \ni y$
|
||||
be disjoint, open,
|
||||
of diameter $\le \frac{1}{2^{|s| +1}}$
|
||||
and such that $\overline{U_{s\concat 0}}, \overline{U_{S \concat 1}} \subseteq U_s$.
|
||||
}{}
|
||||
|
||||
\gist{%
|
||||
Let $x \in 2^{\N}$.
|
||||
Then let $f(x)$ be the unique point in $X$
|
||||
such that
|
||||
|
@ -147,19 +151,23 @@
|
|||
It is clear that $f$ is injective and continuous.
|
||||
% TODO: more details
|
||||
$2^{\N}$ is compact, hence $f^{-1}$ is also continuous.
|
||||
}{Consider $f\colon 2^{\N} \hookrightarrow X, x \mapsto y$, where $\{y\} = \bigcap_n U_{x\defon n}$.
|
||||
By compactness of $2^{\N}$, we get that $f^{-1}$ is continuous.}
|
||||
\end{proof}
|
||||
|
||||
\begin{corollary}
|
||||
\label{cor:perfectpolishcard}
|
||||
Every nonempty perfect Polish
|
||||
space $X$ has cardinality $\fc = 2^{\aleph_0}$
|
||||
% TODO: eulerscript C ?
|
||||
\end{corollary}
|
||||
\begin{proof}
|
||||
Since the cantor space embeds into $X$,
|
||||
we get the lower bound.
|
||||
Since $X$ is second countable and Hausdorff,
|
||||
we get the upper bound.
|
||||
\gist{%
|
||||
Since the cantor space embeds into $X$,
|
||||
we get the lower bound.
|
||||
Since $X$ is second countable and Hausdorff,
|
||||
we get the upper bound.%
|
||||
}{Lower bound: $2^{\N} \hookrightarrow X$,
|
||||
upper bound: \nth{2} countable and Hausdorff.
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem}
|
||||
|
@ -203,12 +211,14 @@
|
|||
countable union of closed sets,
|
||||
i.e.~the complement of a $G_\delta$ set.
|
||||
\end{definition}
|
||||
\gist{%
|
||||
\begin{observe}
|
||||
\begin{itemize}
|
||||
\item Any open set is $F {\sigma}$.
|
||||
\item In metric spaces the intersection of an open and closed set is $F_\sigma$.
|
||||
\end{itemize}
|
||||
\end{observe}
|
||||
}{}
|
||||
\begin{refproof}{thm:bairetopolish}
|
||||
Let $d$ be a complete metric on $X$.
|
||||
W.l.o.g.~$\diam(X) \le 1$.
|
||||
|
@ -220,7 +230,7 @@
|
|||
\item $F_\emptyset = X$,
|
||||
\item $F_s$ is $F_\sigma$ for all $s$.
|
||||
\item The $F_{s \concat i}$ partition $F_s$,
|
||||
i.e.~$F_{s} = \bigsqcup_i F_{s \concat i}$. % TODO change notation?
|
||||
i.e.~$F_{s} = \bigsqcup_i F_{s \concat i}$.
|
||||
|
||||
Furthermore we want that
|
||||
$\overline{F_{s \concat i}} \subseteq F_s$
|
||||
|
@ -228,6 +238,7 @@
|
|||
\item $\diam(F_s) \le 2^{-|s|}$.
|
||||
\end{enumerate}
|
||||
|
||||
\gist{%
|
||||
Suppose we already have $F_s \text{\reflectbox{$\coloneqq$}} F$.
|
||||
We need to construct a partition $(F_i)_{i \in \N}$
|
||||
of $F$ with $\overline{F_i} \subseteq F$
|
||||
|
@ -252,6 +263,7 @@
|
|||
The sets $D_i \coloneqq F_i^0 \cap B_i \setminus (B_1 \cup \ldots \cup B_{i-1})$
|
||||
are $F_\sigma$, disjoint
|
||||
and $F_i^0 = \bigcup_{j} D_j$.
|
||||
}{Induction.}
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
\end{remark}
|
||||
|
||||
\begin{refproof}{thm:bairetopolish}
|
||||
\gist{%
|
||||
Take
|
||||
\[D = \{x \in \cN : \bigcap_{n} F_{x\defon{n}} \neq \emptyset\}.\]
|
||||
|
||||
|
@ -13,15 +14,18 @@
|
|||
\[
|
||||
\bigcap_{n} F_{x\defon{n}} = \bigcap_{n} \overline{F_{x\defon{n}}}.
|
||||
\]
|
||||
}{}
|
||||
|
||||
$f\colon D \to X$ is determined by
|
||||
\[
|
||||
\{f(x)\} = \bigcap_{n} F_{x\defon{n}}
|
||||
\]
|
||||
|
||||
$f$ is injective and continuous.
|
||||
The proof of this is exactly the same as in
|
||||
\yaref{thm:cantortopolish}.
|
||||
\gist{%
|
||||
$f$ is injective and continuous.
|
||||
The proof of this is exactly the same as in
|
||||
\yaref{thm:cantortopolish}.
|
||||
}{}
|
||||
|
||||
\begin{claim}
|
||||
\label{thm:bairetopolish:c1}
|
||||
|
@ -60,7 +64,7 @@
|
|||
|
||||
Take $S \coloneqq \{s \in \N^{<\N}: \exists x \in D, n \in \N.~x=s\defon{n}\}$.
|
||||
Clearly $S$ is a pruned tree.
|
||||
Moreover, since $D$ is closed, we have that\todo{Proof this (homework?)}
|
||||
Moreover, since $D$ is closed, we have that (cf.~\yaref{s3e1})
|
||||
\[
|
||||
D = [S] = \{x \in \N^\N : \forall n \in \N.~x\defon{n} \in S\}.
|
||||
\]
|
||||
|
@ -76,21 +80,27 @@
|
|||
\item $|s| = \phi(|s|)$,
|
||||
\item if $s \in S$, then $\phi(s) = s$.
|
||||
\end{itemize}
|
||||
Let $\phi(\emptyset) = \emptyset$.
|
||||
Suppose that $\phi(t)$ is defined.
|
||||
If $t\concat a \in S$, then set
|
||||
$\phi(t\concat a) \coloneqq t\concat a$.
|
||||
Otherwise take some $b$ such that
|
||||
$t\concat b \in S$ and define
|
||||
$\phi(t\concat a) \coloneqq \phi(t)\concat b$.
|
||||
\gist{%
|
||||
Let $\phi(\emptyset) = \emptyset$.
|
||||
Suppose that $\phi(t)$ is defined.
|
||||
If $t\concat a \in S$, then set
|
||||
$\phi(t\concat a) \coloneqq t\concat a$.
|
||||
Otherwise take some $b$ such that
|
||||
$t\concat b \in S$ and define
|
||||
$\phi(t\concat a) \coloneqq \phi(t)\concat b$.%
|
||||
}{}%
|
||||
This is possible since $S$ is pruned.
|
||||
|
||||
Let $r\colon \cN = [\N^{<\N}] \to [S] = D$
|
||||
be the function defined by $r(x) = \bigcup_n f(x\defon{n})$.
|
||||
\gist{%
|
||||
Let $r\colon \cN = [\N^{<\N}] \to [S] = D$
|
||||
be the function defined by $r(x) = \bigcup_n f(x\defon{n})$.
|
||||
}{}
|
||||
|
||||
$r$ is continuous, since
|
||||
$d_{\cN}(r(x), r(y)) \le d_{\cN}(x,y)$. % Lipschitz
|
||||
It is immediate that $r$ is a retraction.
|
||||
\gist{%
|
||||
It is immediate that $r$ is a retraction.
|
||||
}{}
|
||||
\end{refproof}
|
||||
|
||||
\section{Meager and Comeager Sets}
|
||||
|
@ -117,9 +127,11 @@
|
|||
The complement of a meager set is called
|
||||
\vocab{comeager}.
|
||||
\end{definition}
|
||||
\gist{%
|
||||
\begin{example}
|
||||
$\Q \subseteq \R$ is meager.
|
||||
\end{example}
|
||||
}{}
|
||||
\begin{notation}
|
||||
Let $A, B \subseteq X$.
|
||||
We write $A =^\ast B$
|
||||
|
@ -127,25 +139,29 @@
|
|||
$A \symdif B \coloneqq (A\setminus B) \cup (B \setminus A)$,
|
||||
is meager.
|
||||
\end{notation}
|
||||
\gist{%
|
||||
\begin{remark}
|
||||
$=^\ast$ is an equivalence relation.
|
||||
\end{remark}
|
||||
}{}
|
||||
\begin{definition}
|
||||
A set $A \subseteq X$
|
||||
has the \vocab{Baire property} (\vocab{BP})
|
||||
if $A =^\ast U$ for some $U \overset{\text{open}}{\subseteq} X$.
|
||||
\end{definition}
|
||||
\gist{%
|
||||
Note that open sets and meager sets have the Baire property.
|
||||
}{}
|
||||
|
||||
|
||||
\gist{%
|
||||
\begin{example}
|
||||
\begin{itemize}
|
||||
\item $\Q \subseteq \R$ is $F_\sigma$.
|
||||
\item $\R \setminus \Q \subseteq \R$ is $G_\delta$.
|
||||
\item $\Q \subseteq \R$ is not $G_{\delta}$.
|
||||
(It is dense and meager,
|
||||
\item $\Q \subseteq \R$ is not $G_{\delta}$:
|
||||
It is dense and meager,
|
||||
hence it can not be $G_\delta$
|
||||
by the Baire category theorem).
|
||||
by the \yaref{thm:bct}.
|
||||
\end{itemize}
|
||||
|
||||
\end{example}
|
||||
}
|
||||
|
|
|
@ -6,10 +6,9 @@
|
|||
\item If $F$ is closed then $F$ is nwd iff $X \setminus F$ is open and dense.
|
||||
\item Any meager set $B$ is contained in a meager $F_{\sigma}$-set.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\end{fact}
|
||||
\begin{proof} % remove?
|
||||
\gist{%
|
||||
\begin{proof}
|
||||
\begin{itemize}
|
||||
\item This follows from the definition as $\overline{\overline{A}} = \overline{A}$.
|
||||
\item Trivial.
|
||||
|
@ -17,7 +16,9 @@
|
|||
Then $B \subseteq \bigcup_{n < \omega} \overline{B_n}$.
|
||||
\end{itemize}
|
||||
\end{proof}
|
||||
}{}
|
||||
|
||||
\gist{%
|
||||
\begin{definition}
|
||||
A \vocab{$\sigma$-algebra} on a set $X$
|
||||
is a collection of subsets of $X$
|
||||
|
@ -32,14 +33,15 @@
|
|||
Since $\bigcap_{i < \omega} A_i = \left( \bigcup_{i < \omega} A_i^c \right)^c$
|
||||
we have that $\sigma$-algebras are closed under countable intersections.
|
||||
\end{fact}
|
||||
}{}
|
||||
|
||||
\begin{theorem}
|
||||
\label{thm:bairesigma}
|
||||
Let $X$ be a topological space.
|
||||
Then the collection of sets with the Baire property
|
||||
is a $\sigma$-algebra on $X$.
|
||||
is \gist{a $\sigma$-algebra on $X$.
|
||||
|
||||
It is the smallest $\sigma$-algebra
|
||||
It is}{} the smallest $\sigma$-algebra
|
||||
containing all meager and open sets.
|
||||
\end{theorem}
|
||||
\begin{refproof}{thm:bairesigma}
|
||||
|
@ -274,9 +276,11 @@ but for meager sets:
|
|||
% \end{refproof}
|
||||
% TODO fix claim numbers
|
||||
|
||||
\gist{%
|
||||
\begin{remark}
|
||||
Suppose that $A$ has the BP.
|
||||
Then there is an open $U$ such that
|
||||
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
|
||||
Then $A = U \symdif M$.
|
||||
\end{remark}
|
||||
}{}
|
||||
|
|
|
@ -101,7 +101,6 @@ Then define
|
|||
\Pi^0_\alpha(X) \coloneqq \lnot \Sigma^0_\alpha(X) \coloneqq
|
||||
\{X \setminus A | A \in \Sigma^0_\alpha(X)\},
|
||||
\]
|
||||
% \todo{Define $\lnot$ (element-wise complement)}
|
||||
and for $\alpha > 1$
|
||||
\[
|
||||
\Sigma^0_\alpha \coloneqq \{\bigcup_{n < \omega} A_n : A_n \in \Pi^0_{\alpha_n}(X) \text{ for some $\alpha_n < \alpha$}\}.
|
||||
|
|
|
@ -37,17 +37,18 @@
|
|||
\item \begin{itemize}
|
||||
\item $\Sigma^0_\xi(X)$ is closed under countable unions.
|
||||
\item $\Pi^0_\xi(X)$ is closed under countable intersections.
|
||||
\item $\Delta^0_\xi(X)$ is closed under complements,
|
||||
countable unions and
|
||||
countable intersections.
|
||||
\item $\Delta^0_\xi(X)$ is closed under complements.
|
||||
\end{itemize}
|
||||
\item \begin{itemize}
|
||||
\item $\Sigma^0_\xi(X)$ is closed under \emph{finite} intersections.
|
||||
\item $\Pi^0_\xi(X)$ is closed under \emph{finite} unions.
|
||||
\item $\Delta^0_\xi(X)$ is closed under finite unions and
|
||||
finite intersections.
|
||||
\end{itemize}
|
||||
|
||||
\end{enumerate}
|
||||
\end{proposition}
|
||||
\gist{%
|
||||
\begin{proof}
|
||||
\begin{enumerate}[(a)]
|
||||
\item This follows directly from the definition.
|
||||
|
@ -67,24 +68,27 @@
|
|||
|
||||
\end{enumerate}
|
||||
\end{proof}
|
||||
}{}
|
||||
\begin{example}
|
||||
Consider the cantor space $2^{\omega}$.
|
||||
We have that $\Delta^0_1(2^{\omega})$
|
||||
is not closed under countable unions
|
||||
(countable unions yield all open sets, but there are open
|
||||
sets that are not clopen).
|
||||
is not closed under countable unions%
|
||||
\gist{ (countable unions yield all open sets, but there are open
|
||||
sets that are not clopen)}{}.
|
||||
\end{example}
|
||||
|
||||
\subsection{Turning Borels Sets into Clopens}
|
||||
|
||||
\begin{theorem}%
|
||||
\gist{%
|
||||
\footnote{Whilst strikingly concise the verb ``\vocab[Clopenization™]{to clopenize}''
|
||||
unfortunately seems to be non-standard vocabulary.
|
||||
Our tutor repeatedly advised against using it in the final exam.
|
||||
Contrary to popular belief
|
||||
the very same tutor was \textit{not} the one first to introduce it,
|
||||
as it would certainly be spelled ``to clopenise'' if that were the case.
|
||||
}
|
||||
}%
|
||||
}{}%
|
||||
\label{thm:clopenize}
|
||||
Let $(X, \cT)$ be a Polish space.
|
||||
For any Borel set $A \subseteq X$,
|
||||
|
@ -163,7 +167,7 @@
|
|||
such that $\cT_n \supseteq \cT$
|
||||
and $\cB(\cT_n) = \cB(\cT)$.
|
||||
Then the topology $\cT_\infty$ generated by $\bigcup_{n} \cT_n$
|
||||
is still Polish
|
||||
is Polish
|
||||
and $\cB(\cT_\infty) = \cB(T)$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
|
@ -183,7 +187,51 @@
|
|||
definition of $\cF$ belong to
|
||||
a countable basis of the respective $\cT_n$).
|
||||
|
||||
\todo{This proof will be finished in the next lecture}
|
||||
% Proof was finished in lecture 8
|
||||
Let $Y = \prod_{n \in \N} (X, \cT_n)$.
|
||||
Then $Y$ is Polish.
|
||||
Let $\delta\colon (X, \cT_\infty) \to Y$
|
||||
defined by $\delta(x) = (x,x,x,\ldots)$.
|
||||
\begin{claim}
|
||||
$\delta$ is a homeomorphism.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Clearly $\delta$ is a bijection.
|
||||
We need to show that it is continuous and open.
|
||||
|
||||
Let $U \in \cT_i$.
|
||||
Then
|
||||
\[
|
||||
\delta^{-1}(D \cap \left( X \times X \times \ldots\times U \times \ldots) \right)) = U \in \cT_i \subseteq \cT_\infty,
|
||||
\]
|
||||
hence $\delta$ is continuous.
|
||||
Let $U \in \cT_\infty$.
|
||||
Then $U$ is the union of sets of the form
|
||||
\[
|
||||
V = U_{n_1} \cap U_{n_2} \cap \ldots \cap U_{nu}
|
||||
\]
|
||||
for some $n_1 < n_2 < \ldots < n_u$
|
||||
and $U_{n_i} \in \cT_i$.
|
||||
|
||||
Thus is suffices to consider sets of this form.
|
||||
We have that
|
||||
\[
|
||||
\delta(V) = D \cap (X \times X \times \ldots \times U_{n_1} \times \ldots \times U_{n_2} \times \ldots \times U_{n_u} \times X \times \ldots) \overset{\text{open}}{\subseteq} D.
|
||||
\]
|
||||
\end{subproof}
|
||||
|
||||
This will finish the proof since
|
||||
\[
|
||||
D = \{(x,x,\ldots) \in Y : x \in X\} \overset{\text{closed}}{\subseteq} Y
|
||||
\]
|
||||
Why? Let $(x_n) \in Y \setminus D$.
|
||||
Then there are $i < j$ such that $x_i \neq x_j$.
|
||||
Take disjoint open $x_i \in U$, $x_j \in V$.
|
||||
Then
|
||||
\[(x_n) \in X \times X \times \ldots \times U \times \ldots \times X \times \ldots \times V \times X \times \ldots\]
|
||||
is open in $Y\setminus D$.
|
||||
Hence $Y \setminus D$ is open, thus $D$ is closed.
|
||||
It follows that $D$ is Polish.
|
||||
\end{proof}
|
||||
|
||||
We need to show that $A$ is closed under countable unions.
|
||||
|
|
|
@ -1,61 +1,8 @@
|
|||
\lecture{08}{2023-11-10}{}
|
||||
|
||||
\todo{put this lemma in the right place}
|
||||
\begin{lemma}[Lemma 2]
|
||||
Let $(X, \cT)$ be a Polish space.
|
||||
Let $\cT_n \supseteq \cT$ be Polish
|
||||
with $\cB(X, \cT_n) = \cB(X, \cT)$.
|
||||
Let $\cT_\infty$ be the topology generated
|
||||
by $\bigcup_n \cT_n$.
|
||||
Then $(X, \cT_\infty)$ is Polish
|
||||
and $\cB(X, \cT_\infty) = \cB(X, \cT)$.
|
||||
\end{lemma}
|
||||
\begin{proof}
|
||||
Let $Y = \prod_{n \in \N} (X, \cT_n)$.
|
||||
Then $Y$ is Polish.
|
||||
Let $\delta\colon (X, \cT_\infty) \to Y$
|
||||
defined by $\delta(x) = (x,x,x,\ldots)$.
|
||||
\begin{claim}
|
||||
$\delta$ is a homeomorphism.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Clearly $\delta$ is a bijection.
|
||||
We need to show that it is continuous and open.
|
||||
|
||||
Let $U \in \cT_i$.
|
||||
Then
|
||||
\[
|
||||
\delta^{-1}(D \cap \left( X \times X \times \ldots\times U \times \ldots) \right)) = U \in \cT_i \subseteq \cT_\infty,
|
||||
\]
|
||||
hence $\delta$ is continuous.
|
||||
Let $U \in \cT_\infty$.
|
||||
Then $U$ is the union of sets of the form
|
||||
\[
|
||||
V = U_{n_1} \cap U_{n_2} \cap \ldots \cap U_{nu}
|
||||
\]
|
||||
for some $n_1 < n_2 < \ldots < n_u$
|
||||
and $U_{n_i} \in \cT_i$.
|
||||
|
||||
Thus is suffices to consider sets of this form.
|
||||
We have that
|
||||
\[
|
||||
\delta(V) = D \cap (X \times X \times \ldots \times U_{n_1} \times \ldots \times U_{n_2} \times \ldots \times U_{n_u} \times X \times \ldots) \overset{\text{open}}{\subseteq} D.
|
||||
\]
|
||||
\end{subproof}
|
||||
|
||||
This will finish the proof since
|
||||
\[
|
||||
D = \{(x,x,\ldots) \in Y : x \in X\} \overset{\text{closed}}{\subseteq} Y
|
||||
\]
|
||||
Why? Let $(x_n) \in Y \setminus D$.
|
||||
Then there are $i < j$ such that $x_i \neq x_j$.
|
||||
Take disjoint open $x_i \in U$, $x_j \in V$.
|
||||
Then
|
||||
\[(x_n) \in X \times X \times \ldots \times U \times \ldots \times X \times \ldots \times V \times X \times \ldots\]
|
||||
is open in $Y\setminus D$.
|
||||
Hence $Y \setminus D$ is open, thus $D$ is closed.
|
||||
It follows that $D$ is Polish.
|
||||
\end{proof}
|
||||
\lecture{08}{2023-11-10}{}\footnote{%
|
||||
In the beginning of the lecture, we finished
|
||||
the proof of \yaref{thm:clopenize:l2}.
|
||||
This has been moved to the notes on lecture 7.%
|
||||
}
|
||||
|
||||
\subsection{Parametrizations}
|
||||
%\todo{choose better title}
|
||||
|
|
|
@ -27,8 +27,10 @@
|
|||
|
||||
\begin{definition}
|
||||
A topological space is \vocab{Lindelöf}
|
||||
if every open cover has a countable subcover.
|
||||
iff every open cover has a countable subcover.
|
||||
\end{definition}
|
||||
|
||||
|
||||
\begin{fact}
|
||||
Let $X$ be a metric space.
|
||||
If $X$ is Lindelöf,
|
||||
|
@ -64,5 +66,12 @@
|
|||
and Lindelöf coincide.
|
||||
|
||||
In arbitrary topological spaces,
|
||||
Lindelöf is the strongest of these notions.
|
||||
Lindelöf is the weakest of these notions.
|
||||
\end{remark}
|
||||
|
||||
\begin{definition}+
|
||||
A metric space $X$ is \vocab{totally bounded}
|
||||
iff for every $\epsilon > 0$ there exists
|
||||
a finite set of points $x_1,\ldots,x_n$
|
||||
such that $X = \bigcup_{i=1}^n B_{\epsilon}(x_i)$.
|
||||
\end{definition}
|
||||
|
|
Loading…
Reference in a new issue