gist for lectures 1-4
Some checks failed
Build latex and deploy / checkout (push) Failing after 1m4s

This commit is contained in:
Josia Pietsch 2024-01-23 21:52:45 +01:00
parent 0a14244eb3
commit c986475c77
Signed by: josia
GPG key ID: E70B571D66986A2D
9 changed files with 264 additions and 217 deletions

View file

@ -76,7 +76,7 @@ However the converse of this does not hold.
\end{itemize} \end{itemize}
\end{fact} \end{fact}
\begin{fact} \begin{fact}
Compact\footnote{It is not clear whether compact means compact and Hausdorff in this lecture.} Hausdorff spaces are \vocab{normal} (T4) Compact Hausdorff spaces are \vocab{normal} (T4)
i.e.~two disjoint closed subsets can be separated i.e.~two disjoint closed subsets can be separated
by open sets. by open sets.
\end{fact} \end{fact}
@ -114,7 +114,7 @@ However the converse of this does not hold.
\end{absolutelynopagebreak} \end{absolutelynopagebreak}
\subsection{Some facts about polish spaces} \subsection{Some facts about polish spaces}
\gist{%
\begin{fact} \begin{fact}
Let $(X, \tau)$ be a topological space. Let $(X, \tau)$ be a topological space.
Let $d$ be a metric on $X$. Let $d$ be a metric on $X$.
@ -130,9 +130,10 @@ To show that $\tau_d = \tau_{d'}$
for two metrics $d, d'$, for two metrics $d, d'$,
suffices to show that open balls in one metric are unions of open balls in the other. suffices to show that open balls in one metric are unions of open balls in the other.
\end{fact} \end{fact}
}{}
\begin{notation} \begin{notation}
We sometimes denote $\min(a,b)$ by $a \wedge b$. We sometimes\footnote{only in this subsection?} denote $\min(a,b)$ by $a \wedge b$.
\end{notation} \end{notation}
\begin{proposition} \begin{proposition}
@ -142,6 +143,7 @@ suffices to show that open balls in one metric are unions of open balls in the o
Then $d' \coloneqq \min(d,1)$ is also a metric compatible with $\tau$. Then $d' \coloneqq \min(d,1)$ is also a metric compatible with $\tau$.
\end{proposition} \end{proposition}
\gist{%
\begin{proof} \begin{proof}
To check the triangle inequality: To check the triangle inequality:
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
@ -154,6 +156,7 @@ suffices to show that open balls in one metric are unions of open balls in the o
Since $d$ is complete, we have that $d'$ is complete. Since $d$ is complete, we have that $d'$ is complete.
\end{proof} \end{proof}
}{}
\begin{proposition} \begin{proposition}
Let $A$ be a Polish space. Let $A$ be a Polish space.
Then $A^{\omega}$ Polish. Then $A^{\omega}$ Polish.
@ -252,15 +255,15 @@ suffices to show that open balls in one metric are unions of open balls in the o
\begin{proposition} \begin{proposition}
Closed subspaces of Polish spaces are Polish. Closed subspaces of Polish spaces are Polish.
\end{proposition} \end{proposition}
\gist{}{ \gist{%
\begin{proof} \begin{proof}
Let $X$ be Polish and $V \subseteq X$ closed. Let $X$ be Polish and $V \subseteq X$ closed.
Let $d$ be a complete metric on $X$. Let $d$ be a complete metric on $X$.
Then $d\defon{V}$ is complete. Then $d\defon{V}$ is complete.
Subspaces of second countable spaces Subspaces of second countable spaces
are second countable. are second countable.
\end{proof} \end{proof}%
} }{}
\begin{definition} \begin{definition}
Let $X$ be a topological space. Let $X$ be a topological space.

View file

@ -72,41 +72,51 @@
\[d_1((x_1,y_1), (x_2, y_2)) \coloneqq d(x_1,x_2) + |y_1 - y_2|\] \[d_1((x_1,y_1), (x_2, y_2)) \coloneqq d(x_1,x_2) + |y_1 - y_2|\]
metric is complete. metric is complete.
$f_U$ is an embedding of $U$ into $X \times \R$\gist{: $f_U$ is an embedding of $U$ into $X \times \R$%
\begin{itemize} \gist{:
\item It is injective because of the first coordinate. \begin{itemize}
\item It is continuous since $d(x, U^c)$ is continuous \item It is injective because of the first coordinate.
and only takes strictly positive values. % TODO \item It is continuous since $d(x, U^c)$ is continuous
\item The inverse is continuous because projections and only takes strictly positive values. % TODO
are continuous. \item The inverse is continuous because projections
\end{itemize} are continuous.
}{.} \end{itemize}
}{.}
So we have shown that $U$ and \gist{%
the graph of $\tilde{f_U}\colon x \mapsto \frac{1}{d(x, U^c)}$ So we have shown that $U$ and
are homeomorphic. the graph of $\tilde{f_U}\colon x \mapsto \frac{1}{d(x, U^c)}$
The graph is closed \gist{in $U \times \R$, are homeomorphic.
because $\tilde{f_U}$ is continuous. The graph is closed \gist{in $U \times \R$,
It is closed}{} in $X \times \R$ \gist{because because $\tilde{f_U}$ is continuous.
$\tilde{f_U} \to \infty$ for $d(x, U^c) \to 0$}{}. It is closed}{} in $X \times \R$ \gist{because
\todo{Make this precise} $\tilde{f_U} \to \infty$ for $d(x, U^c) \to 0$}{}.
\todo{Make this precise}
Therefore we identified $U$ with a closed subspace of
the Polish space $(X \times \R, d_1)$.
}{%
So $U \cong \mathop{Graph}(x \mapsto \frac{1}{d(x, U^c)})$
and the RHS is a close subspace of the Polish space
$(X \times \R, d_1)$.
}
Therefore we identified $U$ with a closed subspace of
the Polish space $(X \times \R, d_1)$.
\end{refproof} \end{refproof}
Let $Y = \bigcap_{n \in \N} U_n$ be $G_{\delta}$. Let $Y = \bigcap_{n \in \N} U_n$ be $G_{\delta}$.
Take Consider
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
f_Y\colon Y &\longrightarrow & X \times \R^{\N} \\ f_Y\colon Y &\longrightarrow & X \times \R^{\N} \\
x &\longmapsto & x &\longmapsto &
\left(x, \left( \frac{1}{\delta(x,U_n^c)} \right)_{n \in \N}\right) \left(x, \left( \frac{1}{\delta(x,U_n^c)} \right)_{n \in \N}\right)
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
As for an open $U$, $f_Y$ is an embedding. \gist{
Since $X \times \R^{\N}$ As for an open $U$, $f_Y$ is an embedding.
is completely metrizable, Since $X \times \R^{\N}$
so is the closed set $f_Y(Y) \subseteq X \times \R^\N$. is completely metrizable,
so is the closed set $f_Y(Y) \subseteq X \times \R^\N$.
}{}
\begin{claim} \begin{claim}
\label{psubspacegdelta:c2} \label{psubspacegdelta:c2}
@ -123,36 +133,35 @@
\item $\diam_d(U) \le \frac{1}{n}$, \item $\diam_d(U) \le \frac{1}{n}$,
\item $\diam_{d_Y}(U \cap Y) \le \frac{1}{n}$. \item $\diam_{d_Y}(U \cap Y) \le \frac{1}{n}$.
\end{enumerate} \end{enumerate}
\gist{ \gist{%
We want to show that $Y = \bigcap_{n \in \N} V_n$. We want to show that $Y = \bigcap_{n \in \N} V_n$.
For $x \in Y$, $n \in \N$ we have $x \in V_n$, For $x \in Y$, $n \in \N$ we have $x \in V_n$,
as we can choose two neighbourhoods as we can choose two neighbourhoods
$U_1$ (open in $Y)$ and $U_2$ (open in $X$ ) of $x$, $U_1$ (open in $Y)$ and $U_2$ (open in $X$ ) of $x$,
such that $\diam_{d_Y}(U) < \frac{1}{n}$ such that $\diam_{d_Y}(U) < \frac{1}{n}$
and $U_2 \cap Y = U_1$. and $U_2 \cap Y = U_1$.
Additionally choose $x \in U_3$ open in $X$ Additionally choose $x \in U_3$ open in $X$
with $\diam_{d}(U_3) < \frac{1}{n}$. with $\diam_{d}(U_3) < \frac{1}{n}$.
Then consider $U_2 \cap U_3 \subseteq V_n$. Then consider $U_2 \cap U_3 \subseteq V_n$.
Hence $Y \subseteq \bigcap_{n \in \N} V_n$. Hence $Y \subseteq \bigcap_{n \in \N} V_n$.
Now let $x \in \bigcap_{n \in \N} V_n$. Now let $x \in \bigcap_{n \in \N} V_n$.
For each $n$ pick $x \in U_n \subseteq X$ open For each $n$ pick $x \in U_n \subseteq X$ open
satisfying (i), (ii), (iii). satisfying (i), (ii), (iii).
From (i) and (ii) it follows that $x \in \overline{Y}$, From (i) and (ii) it follows that $x \in \overline{Y}$,
since we can consider a sequence of points $y_n \in U_n \cap Y$ since we can consider a sequence of points $y_n \in U_n \cap Y$
and get $y_n \xrightarrow{d} x$. and get $y_n \xrightarrow{d} x$.
For all $n$ we have that $U_n' \coloneqq U_1 \cap \ldots \cap U_n$ For all $n$ we have that $U_n' \coloneqq U_1 \cap \ldots \cap U_n$
is an open set containing $x$, is an open set containing $x$,
hence $U_n' \cap Y \neq \emptyset$. hence $U_n' \cap Y \neq \emptyset$.
Thus we may assume that the $U_i$ form a decreasing sequence. Thus we may assume that the $U_i$ form a decreasing sequence.
We have that $\diam_{d_Y}(U_n \cap Y) \le \frac{1}{n}$. We have that $\diam_{d_Y}(U_n \cap Y) \le \frac{1}{n}$.
If follows that the $y_n$ form a Cauchy sequence with respect to $d_Y$, If follows that the $y_n$ form a Cauchy sequence with respect to $d_Y$,
since $\diam(U_n \cap Y) \xrightarrow{d_Y} 0$ since $\diam(U_n \cap Y) \xrightarrow{d_Y} 0$
and thus $\diam(\overline{U_n \cap Y}) \xrightarrow{d_Y} 0$. and thus $\diam(\overline{U_n \cap Y}) \xrightarrow{d_Y} 0$.
The sequence $y_n$ converges to the unique point in The sequence $y_n$ converges to the unique point in
$\bigcap_{n} \overline{U_n \cap Y}$. $\bigcap_{n} \overline{U_n \cap Y}$.
Since the topologies agree, this point is $x$. Since the topologies agree, this point is $x$.
}{Then $Y = \bigcap_n U_n$.} }{Then $Y = \bigcap_n U_n$.}
\end{refproof} \end{refproof}
\end{refproof} \end{refproof}

View file

@ -2,7 +2,7 @@
\subsection{Trees} \subsection{Trees}
\gist{%
\begin{notation} \begin{notation}
Let $A \neq \emptyset$, $n \in \N$. Let $A \neq \emptyset$, $n \in \N$.
Then Then
@ -59,6 +59,7 @@
define extension, initial segments define extension, initial segments
and concatenation of a finite sequence with an infinite one. and concatenation of a finite sequence with an infinite one.
\end{notation} \end{notation}
}{}
\begin{definition} \begin{definition}
A \vocab{tree} A \vocab{tree}
@ -127,16 +128,19 @@
We define $U_s$ inductively on the length of $s$. We define $U_s$ inductively on the length of $s$.
For $U_{\emptyset}$ take any non-empty open set \gist{%
with small enough diameter. For $U_{\emptyset}$ take any non-empty open set
with small enough diameter.
Given $U_s$, pick $x \neq y \in U_s$ Given $U_s$, pick $x \neq y \in U_s$
and let $U_{s \concat 0} \ni x$, and let $U_{s \concat 0} \ni x$,
$U_{s \concat 1} \ni y$ $U_{s \concat 1} \ni y$
be disjoint, open, be disjoint, open,
of diameter $\le \frac{1}{2^{|s| +1}}$ of diameter $\le \frac{1}{2^{|s| +1}}$
and such that $\overline{U_{s\concat 0}}, \overline{U_{S \concat 1}} \subseteq U_s$. and such that $\overline{U_{s\concat 0}}, \overline{U_{S \concat 1}} \subseteq U_s$.
}{}
\gist{%
Let $x \in 2^{\N}$. Let $x \in 2^{\N}$.
Then let $f(x)$ be the unique point in $X$ Then let $f(x)$ be the unique point in $X$
such that such that
@ -147,19 +151,23 @@
It is clear that $f$ is injective and continuous. It is clear that $f$ is injective and continuous.
% TODO: more details % TODO: more details
$2^{\N}$ is compact, hence $f^{-1}$ is also continuous. $2^{\N}$ is compact, hence $f^{-1}$ is also continuous.
}{Consider $f\colon 2^{\N} \hookrightarrow X, x \mapsto y$, where $\{y\} = \bigcap_n U_{x\defon n}$.
By compactness of $2^{\N}$, we get that $f^{-1}$ is continuous.}
\end{proof} \end{proof}
\begin{corollary} \begin{corollary}
\label{cor:perfectpolishcard} \label{cor:perfectpolishcard}
Every nonempty perfect Polish Every nonempty perfect Polish
space $X$ has cardinality $\fc = 2^{\aleph_0}$ space $X$ has cardinality $\fc = 2^{\aleph_0}$
% TODO: eulerscript C ?
\end{corollary} \end{corollary}
\begin{proof} \begin{proof}
Since the cantor space embeds into $X$, \gist{%
we get the lower bound. Since the cantor space embeds into $X$,
Since $X$ is second countable and Hausdorff, we get the lower bound.
we get the upper bound. Since $X$ is second countable and Hausdorff,
we get the upper bound.%
}{Lower bound: $2^{\N} \hookrightarrow X$,
upper bound: \nth{2} countable and Hausdorff.
\end{proof} \end{proof}
\begin{theorem} \begin{theorem}
@ -203,12 +211,14 @@
countable union of closed sets, countable union of closed sets,
i.e.~the complement of a $G_\delta$ set. i.e.~the complement of a $G_\delta$ set.
\end{definition} \end{definition}
\gist{%
\begin{observe} \begin{observe}
\begin{itemize} \begin{itemize}
\item Any open set is $F {\sigma}$. \item Any open set is $F {\sigma}$.
\item In metric spaces the intersection of an open and closed set is $F_\sigma$. \item In metric spaces the intersection of an open and closed set is $F_\sigma$.
\end{itemize} \end{itemize}
\end{observe} \end{observe}
}{}
\begin{refproof}{thm:bairetopolish} \begin{refproof}{thm:bairetopolish}
Let $d$ be a complete metric on $X$. Let $d$ be a complete metric on $X$.
W.l.o.g.~$\diam(X) \le 1$. W.l.o.g.~$\diam(X) \le 1$.
@ -220,7 +230,7 @@
\item $F_\emptyset = X$, \item $F_\emptyset = X$,
\item $F_s$ is $F_\sigma$ for all $s$. \item $F_s$ is $F_\sigma$ for all $s$.
\item The $F_{s \concat i}$ partition $F_s$, \item The $F_{s \concat i}$ partition $F_s$,
i.e.~$F_{s} = \bigsqcup_i F_{s \concat i}$. % TODO change notation? i.e.~$F_{s} = \bigsqcup_i F_{s \concat i}$.
Furthermore we want that Furthermore we want that
$\overline{F_{s \concat i}} \subseteq F_s$ $\overline{F_{s \concat i}} \subseteq F_s$
@ -228,6 +238,7 @@
\item $\diam(F_s) \le 2^{-|s|}$. \item $\diam(F_s) \le 2^{-|s|}$.
\end{enumerate} \end{enumerate}
\gist{%
Suppose we already have $F_s \text{\reflectbox{$\coloneqq$}} F$. Suppose we already have $F_s \text{\reflectbox{$\coloneqq$}} F$.
We need to construct a partition $(F_i)_{i \in \N}$ We need to construct a partition $(F_i)_{i \in \N}$
of $F$ with $\overline{F_i} \subseteq F$ of $F$ with $\overline{F_i} \subseteq F$
@ -252,6 +263,7 @@
The sets $D_i \coloneqq F_i^0 \cap B_i \setminus (B_1 \cup \ldots \cup B_{i-1})$ The sets $D_i \coloneqq F_i^0 \cap B_i \setminus (B_1 \cup \ldots \cup B_{i-1})$
are $F_\sigma$, disjoint are $F_\sigma$, disjoint
and $F_i^0 = \bigcup_{j} D_j$. and $F_i^0 = \bigcup_{j} D_j$.
}{Induction.}

View file

@ -5,6 +5,7 @@
\end{remark} \end{remark}
\begin{refproof}{thm:bairetopolish} \begin{refproof}{thm:bairetopolish}
\gist{%
Take Take
\[D = \{x \in \cN : \bigcap_{n} F_{x\defon{n}} \neq \emptyset\}.\] \[D = \{x \in \cN : \bigcap_{n} F_{x\defon{n}} \neq \emptyset\}.\]
@ -13,15 +14,18 @@
\[ \[
\bigcap_{n} F_{x\defon{n}} = \bigcap_{n} \overline{F_{x\defon{n}}}. \bigcap_{n} F_{x\defon{n}} = \bigcap_{n} \overline{F_{x\defon{n}}}.
\] \]
}{}
$f\colon D \to X$ is determined by $f\colon D \to X$ is determined by
\[ \[
\{f(x)\} = \bigcap_{n} F_{x\defon{n}} \{f(x)\} = \bigcap_{n} F_{x\defon{n}}
\] \]
$f$ is injective and continuous. \gist{%
The proof of this is exactly the same as in $f$ is injective and continuous.
\yaref{thm:cantortopolish}. The proof of this is exactly the same as in
\yaref{thm:cantortopolish}.
}{}
\begin{claim} \begin{claim}
\label{thm:bairetopolish:c1} \label{thm:bairetopolish:c1}
@ -60,7 +64,7 @@
Take $S \coloneqq \{s \in \N^{<\N}: \exists x \in D, n \in \N.~x=s\defon{n}\}$. Take $S \coloneqq \{s \in \N^{<\N}: \exists x \in D, n \in \N.~x=s\defon{n}\}$.
Clearly $S$ is a pruned tree. Clearly $S$ is a pruned tree.
Moreover, since $D$ is closed, we have that\todo{Proof this (homework?)} Moreover, since $D$ is closed, we have that (cf.~\yaref{s3e1})
\[ \[
D = [S] = \{x \in \N^\N : \forall n \in \N.~x\defon{n} \in S\}. D = [S] = \{x \in \N^\N : \forall n \in \N.~x\defon{n} \in S\}.
\] \]
@ -76,21 +80,27 @@
\item $|s| = \phi(|s|)$, \item $|s| = \phi(|s|)$,
\item if $s \in S$, then $\phi(s) = s$. \item if $s \in S$, then $\phi(s) = s$.
\end{itemize} \end{itemize}
Let $\phi(\emptyset) = \emptyset$. \gist{%
Suppose that $\phi(t)$ is defined. Let $\phi(\emptyset) = \emptyset$.
If $t\concat a \in S$, then set Suppose that $\phi(t)$ is defined.
$\phi(t\concat a) \coloneqq t\concat a$. If $t\concat a \in S$, then set
Otherwise take some $b$ such that $\phi(t\concat a) \coloneqq t\concat a$.
$t\concat b \in S$ and define Otherwise take some $b$ such that
$\phi(t\concat a) \coloneqq \phi(t)\concat b$. $t\concat b \in S$ and define
$\phi(t\concat a) \coloneqq \phi(t)\concat b$.%
}{}%
This is possible since $S$ is pruned. This is possible since $S$ is pruned.
Let $r\colon \cN = [\N^{<\N}] \to [S] = D$ \gist{%
be the function defined by $r(x) = \bigcup_n f(x\defon{n})$. Let $r\colon \cN = [\N^{<\N}] \to [S] = D$
be the function defined by $r(x) = \bigcup_n f(x\defon{n})$.
}{}
$r$ is continuous, since $r$ is continuous, since
$d_{\cN}(r(x), r(y)) \le d_{\cN}(x,y)$. % Lipschitz $d_{\cN}(r(x), r(y)) \le d_{\cN}(x,y)$. % Lipschitz
It is immediate that $r$ is a retraction. \gist{%
It is immediate that $r$ is a retraction.
}{}
\end{refproof} \end{refproof}
\section{Meager and Comeager Sets} \section{Meager and Comeager Sets}
@ -117,9 +127,11 @@
The complement of a meager set is called The complement of a meager set is called
\vocab{comeager}. \vocab{comeager}.
\end{definition} \end{definition}
\gist{%
\begin{example} \begin{example}
$\Q \subseteq \R$ is meager. $\Q \subseteq \R$ is meager.
\end{example} \end{example}
}{}
\begin{notation} \begin{notation}
Let $A, B \subseteq X$. Let $A, B \subseteq X$.
We write $A =^\ast B$ We write $A =^\ast B$
@ -127,25 +139,29 @@
$A \symdif B \coloneqq (A\setminus B) \cup (B \setminus A)$, $A \symdif B \coloneqq (A\setminus B) \cup (B \setminus A)$,
is meager. is meager.
\end{notation} \end{notation}
\gist{%
\begin{remark} \begin{remark}
$=^\ast$ is an equivalence relation. $=^\ast$ is an equivalence relation.
\end{remark} \end{remark}
}{}
\begin{definition} \begin{definition}
A set $A \subseteq X$ A set $A \subseteq X$
has the \vocab{Baire property} (\vocab{BP}) has the \vocab{Baire property} (\vocab{BP})
if $A =^\ast U$ for some $U \overset{\text{open}}{\subseteq} X$. if $A =^\ast U$ for some $U \overset{\text{open}}{\subseteq} X$.
\end{definition} \end{definition}
\gist{%
Note that open sets and meager sets have the Baire property. Note that open sets and meager sets have the Baire property.
}{}
\gist{%
\begin{example} \begin{example}
\begin{itemize} \begin{itemize}
\item $\Q \subseteq \R$ is $F_\sigma$. \item $\Q \subseteq \R$ is $F_\sigma$.
\item $\R \setminus \Q \subseteq \R$ is $G_\delta$. \item $\R \setminus \Q \subseteq \R$ is $G_\delta$.
\item $\Q \subseteq \R$ is not $G_{\delta}$. \item $\Q \subseteq \R$ is not $G_{\delta}$:
(It is dense and meager, It is dense and meager,
hence it can not be $G_\delta$ hence it can not be $G_\delta$
by the Baire category theorem). by the \yaref{thm:bct}.
\end{itemize} \end{itemize}
\end{example} \end{example}
}

View file

@ -6,10 +6,9 @@
\item If $F$ is closed then $F$ is nwd iff $X \setminus F$ is open and dense. \item If $F$ is closed then $F$ is nwd iff $X \setminus F$ is open and dense.
\item Any meager set $B$ is contained in a meager $F_{\sigma}$-set. \item Any meager set $B$ is contained in a meager $F_{\sigma}$-set.
\end{itemize} \end{itemize}
\end{fact} \end{fact}
\begin{proof} % remove? \gist{%
\begin{proof}
\begin{itemize} \begin{itemize}
\item This follows from the definition as $\overline{\overline{A}} = \overline{A}$. \item This follows from the definition as $\overline{\overline{A}} = \overline{A}$.
\item Trivial. \item Trivial.
@ -17,7 +16,9 @@
Then $B \subseteq \bigcup_{n < \omega} \overline{B_n}$. Then $B \subseteq \bigcup_{n < \omega} \overline{B_n}$.
\end{itemize} \end{itemize}
\end{proof} \end{proof}
}{}
\gist{%
\begin{definition} \begin{definition}
A \vocab{$\sigma$-algebra} on a set $X$ A \vocab{$\sigma$-algebra} on a set $X$
is a collection of subsets of $X$ is a collection of subsets of $X$
@ -32,14 +33,15 @@
Since $\bigcap_{i < \omega} A_i = \left( \bigcup_{i < \omega} A_i^c \right)^c$ Since $\bigcap_{i < \omega} A_i = \left( \bigcup_{i < \omega} A_i^c \right)^c$
we have that $\sigma$-algebras are closed under countable intersections. we have that $\sigma$-algebras are closed under countable intersections.
\end{fact} \end{fact}
}{}
\begin{theorem} \begin{theorem}
\label{thm:bairesigma} \label{thm:bairesigma}
Let $X$ be a topological space. Let $X$ be a topological space.
Then the collection of sets with the Baire property Then the collection of sets with the Baire property
is a $\sigma$-algebra on $X$. is \gist{a $\sigma$-algebra on $X$.
It is the smallest $\sigma$-algebra It is}{} the smallest $\sigma$-algebra
containing all meager and open sets. containing all meager and open sets.
\end{theorem} \end{theorem}
\begin{refproof}{thm:bairesigma} \begin{refproof}{thm:bairesigma}
@ -274,9 +276,11 @@ but for meager sets:
% \end{refproof} % \end{refproof}
% TODO fix claim numbers % TODO fix claim numbers
\gist{%
\begin{remark} \begin{remark}
Suppose that $A$ has the BP. Suppose that $A$ has the BP.
Then there is an open $U$ such that Then there is an open $U$ such that
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager. $A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
Then $A = U \symdif M$. Then $A = U \symdif M$.
\end{remark} \end{remark}
}{}

View file

@ -101,7 +101,6 @@ Then define
\Pi^0_\alpha(X) \coloneqq \lnot \Sigma^0_\alpha(X) \coloneqq \Pi^0_\alpha(X) \coloneqq \lnot \Sigma^0_\alpha(X) \coloneqq
\{X \setminus A | A \in \Sigma^0_\alpha(X)\}, \{X \setminus A | A \in \Sigma^0_\alpha(X)\},
\] \]
% \todo{Define $\lnot$ (element-wise complement)}
and for $\alpha > 1$ and for $\alpha > 1$
\[ \[
\Sigma^0_\alpha \coloneqq \{\bigcup_{n < \omega} A_n : A_n \in \Pi^0_{\alpha_n}(X) \text{ for some $\alpha_n < \alpha$}\}. \Sigma^0_\alpha \coloneqq \{\bigcup_{n < \omega} A_n : A_n \in \Pi^0_{\alpha_n}(X) \text{ for some $\alpha_n < \alpha$}\}.

View file

@ -37,17 +37,18 @@
\item \begin{itemize} \item \begin{itemize}
\item $\Sigma^0_\xi(X)$ is closed under countable unions. \item $\Sigma^0_\xi(X)$ is closed under countable unions.
\item $\Pi^0_\xi(X)$ is closed under countable intersections. \item $\Pi^0_\xi(X)$ is closed under countable intersections.
\item $\Delta^0_\xi(X)$ is closed under complements, \item $\Delta^0_\xi(X)$ is closed under complements.
countable unions and
countable intersections.
\end{itemize} \end{itemize}
\item \begin{itemize} \item \begin{itemize}
\item $\Sigma^0_\xi(X)$ is closed under \emph{finite} intersections. \item $\Sigma^0_\xi(X)$ is closed under \emph{finite} intersections.
\item $\Pi^0_\xi(X)$ is closed under \emph{finite} unions. \item $\Pi^0_\xi(X)$ is closed under \emph{finite} unions.
\item $\Delta^0_\xi(X)$ is closed under finite unions and
finite intersections.
\end{itemize} \end{itemize}
\end{enumerate} \end{enumerate}
\end{proposition} \end{proposition}
\gist{%
\begin{proof} \begin{proof}
\begin{enumerate}[(a)] \begin{enumerate}[(a)]
\item This follows directly from the definition. \item This follows directly from the definition.
@ -67,24 +68,27 @@
\end{enumerate} \end{enumerate}
\end{proof} \end{proof}
}{}
\begin{example} \begin{example}
Consider the cantor space $2^{\omega}$. Consider the cantor space $2^{\omega}$.
We have that $\Delta^0_1(2^{\omega})$ We have that $\Delta^0_1(2^{\omega})$
is not closed under countable unions is not closed under countable unions%
(countable unions yield all open sets, but there are open \gist{ (countable unions yield all open sets, but there are open
sets that are not clopen). sets that are not clopen)}{}.
\end{example} \end{example}
\subsection{Turning Borels Sets into Clopens} \subsection{Turning Borels Sets into Clopens}
\begin{theorem}% \begin{theorem}%
\gist{%
\footnote{Whilst strikingly concise the verb ``\vocab[Clopenization™]{to clopenize}'' \footnote{Whilst strikingly concise the verb ``\vocab[Clopenization™]{to clopenize}''
unfortunately seems to be non-standard vocabulary. unfortunately seems to be non-standard vocabulary.
Our tutor repeatedly advised against using it in the final exam. Our tutor repeatedly advised against using it in the final exam.
Contrary to popular belief Contrary to popular belief
the very same tutor was \textit{not} the one first to introduce it, the very same tutor was \textit{not} the one first to introduce it,
as it would certainly be spelled ``to clopenise'' if that were the case. as it would certainly be spelled ``to clopenise'' if that were the case.
} }%
}{}%
\label{thm:clopenize} \label{thm:clopenize}
Let $(X, \cT)$ be a Polish space. Let $(X, \cT)$ be a Polish space.
For any Borel set $A \subseteq X$, For any Borel set $A \subseteq X$,
@ -163,7 +167,7 @@
such that $\cT_n \supseteq \cT$ such that $\cT_n \supseteq \cT$
and $\cB(\cT_n) = \cB(\cT)$. and $\cB(\cT_n) = \cB(\cT)$.
Then the topology $\cT_\infty$ generated by $\bigcup_{n} \cT_n$ Then the topology $\cT_\infty$ generated by $\bigcup_{n} \cT_n$
is still Polish is Polish
and $\cB(\cT_\infty) = \cB(T)$. and $\cB(\cT_\infty) = \cB(T)$.
\end{lemma} \end{lemma}
\begin{proof} \begin{proof}
@ -183,7 +187,51 @@
definition of $\cF$ belong to definition of $\cF$ belong to
a countable basis of the respective $\cT_n$). a countable basis of the respective $\cT_n$).
\todo{This proof will be finished in the next lecture} % Proof was finished in lecture 8
Let $Y = \prod_{n \in \N} (X, \cT_n)$.
Then $Y$ is Polish.
Let $\delta\colon (X, \cT_\infty) \to Y$
defined by $\delta(x) = (x,x,x,\ldots)$.
\begin{claim}
$\delta$ is a homeomorphism.
\end{claim}
\begin{subproof}
Clearly $\delta$ is a bijection.
We need to show that it is continuous and open.
Let $U \in \cT_i$.
Then
\[
\delta^{-1}(D \cap \left( X \times X \times \ldots\times U \times \ldots) \right)) = U \in \cT_i \subseteq \cT_\infty,
\]
hence $\delta$ is continuous.
Let $U \in \cT_\infty$.
Then $U$ is the union of sets of the form
\[
V = U_{n_1} \cap U_{n_2} \cap \ldots \cap U_{nu}
\]
for some $n_1 < n_2 < \ldots < n_u$
and $U_{n_i} \in \cT_i$.
Thus is suffices to consider sets of this form.
We have that
\[
\delta(V) = D \cap (X \times X \times \ldots \times U_{n_1} \times \ldots \times U_{n_2} \times \ldots \times U_{n_u} \times X \times \ldots) \overset{\text{open}}{\subseteq} D.
\]
\end{subproof}
This will finish the proof since
\[
D = \{(x,x,\ldots) \in Y : x \in X\} \overset{\text{closed}}{\subseteq} Y
\]
Why? Let $(x_n) \in Y \setminus D$.
Then there are $i < j$ such that $x_i \neq x_j$.
Take disjoint open $x_i \in U$, $x_j \in V$.
Then
\[(x_n) \in X \times X \times \ldots \times U \times \ldots \times X \times \ldots \times V \times X \times \ldots\]
is open in $Y\setminus D$.
Hence $Y \setminus D$ is open, thus $D$ is closed.
It follows that $D$ is Polish.
\end{proof} \end{proof}
We need to show that $A$ is closed under countable unions. We need to show that $A$ is closed under countable unions.

View file

@ -1,61 +1,8 @@
\lecture{08}{2023-11-10}{} \lecture{08}{2023-11-10}{}\footnote{%
In the beginning of the lecture, we finished
\todo{put this lemma in the right place} the proof of \yaref{thm:clopenize:l2}.
\begin{lemma}[Lemma 2] This has been moved to the notes on lecture 7.%
Let $(X, \cT)$ be a Polish space. }
Let $\cT_n \supseteq \cT$ be Polish
with $\cB(X, \cT_n) = \cB(X, \cT)$.
Let $\cT_\infty$ be the topology generated
by $\bigcup_n \cT_n$.
Then $(X, \cT_\infty)$ is Polish
and $\cB(X, \cT_\infty) = \cB(X, \cT)$.
\end{lemma}
\begin{proof}
Let $Y = \prod_{n \in \N} (X, \cT_n)$.
Then $Y$ is Polish.
Let $\delta\colon (X, \cT_\infty) \to Y$
defined by $\delta(x) = (x,x,x,\ldots)$.
\begin{claim}
$\delta$ is a homeomorphism.
\end{claim}
\begin{subproof}
Clearly $\delta$ is a bijection.
We need to show that it is continuous and open.
Let $U \in \cT_i$.
Then
\[
\delta^{-1}(D \cap \left( X \times X \times \ldots\times U \times \ldots) \right)) = U \in \cT_i \subseteq \cT_\infty,
\]
hence $\delta$ is continuous.
Let $U \in \cT_\infty$.
Then $U$ is the union of sets of the form
\[
V = U_{n_1} \cap U_{n_2} \cap \ldots \cap U_{nu}
\]
for some $n_1 < n_2 < \ldots < n_u$
and $U_{n_i} \in \cT_i$.
Thus is suffices to consider sets of this form.
We have that
\[
\delta(V) = D \cap (X \times X \times \ldots \times U_{n_1} \times \ldots \times U_{n_2} \times \ldots \times U_{n_u} \times X \times \ldots) \overset{\text{open}}{\subseteq} D.
\]
\end{subproof}
This will finish the proof since
\[
D = \{(x,x,\ldots) \in Y : x \in X\} \overset{\text{closed}}{\subseteq} Y
\]
Why? Let $(x_n) \in Y \setminus D$.
Then there are $i < j$ such that $x_i \neq x_j$.
Take disjoint open $x_i \in U$, $x_j \in V$.
Then
\[(x_n) \in X \times X \times \ldots \times U \times \ldots \times X \times \ldots \times V \times X \times \ldots\]
is open in $Y\setminus D$.
Hence $Y \setminus D$ is open, thus $D$ is closed.
It follows that $D$ is Polish.
\end{proof}
\subsection{Parametrizations} \subsection{Parametrizations}
%\todo{choose better title} %\todo{choose better title}

View file

@ -27,8 +27,10 @@
\begin{definition} \begin{definition}
A topological space is \vocab{Lindelöf} A topological space is \vocab{Lindelöf}
if every open cover has a countable subcover. iff every open cover has a countable subcover.
\end{definition} \end{definition}
\begin{fact} \begin{fact}
Let $X$ be a metric space. Let $X$ be a metric space.
If $X$ is Lindelöf, If $X$ is Lindelöf,
@ -64,5 +66,12 @@
and Lindelöf coincide. and Lindelöf coincide.
In arbitrary topological spaces, In arbitrary topological spaces,
Lindelöf is the strongest of these notions. Lindelöf is the weakest of these notions.
\end{remark} \end{remark}
\begin{definition}+
A metric space $X$ is \vocab{totally bounded}
iff for every $\epsilon > 0$ there exists
a finite set of points $x_1,\ldots,x_n$
such that $X = \bigcup_{i=1}^n B_{\epsilon}(x_i)$.
\end{definition}