diff --git a/inputs/tutorial_10.tex b/inputs/tutorial_10.tex index 92158d7..1a34b51 100644 --- a/inputs/tutorial_10.tex +++ b/inputs/tutorial_10.tex @@ -123,7 +123,7 @@ In fact we have shown Then $d(\cdot , U^c)\colon U \to \R_{\ge 0}$ is always non-zero and continuous. So $d(K,U^c)$ attains a minimum $\epsilon > 0$. - Then $B_{\epsilon}^H_\epsilon(K) \subseteq U$, + Then $B_{\epsilon}^H(K) \subseteq U$, so $[U]$ is open in $\tau_V$. Let $K \in \langle U \rangle$.