diff --git a/inputs/tutorial_10.tex b/inputs/tutorial_10.tex
index 92158d7..1a34b51 100644
--- a/inputs/tutorial_10.tex
+++ b/inputs/tutorial_10.tex
@@ -123,7 +123,7 @@ In fact we have shown
         Then $d(\cdot , U^c)\colon  U \to \R_{\ge 0}$
         is always non-zero and continuous.
         So $d(K,U^c)$ attains a minimum  $\epsilon > 0$.
-        Then $B_{\epsilon}^H_\epsilon(K) \subseteq U$,
+        Then $B_{\epsilon}^H(K) \subseteq U$,
         so $[U]$ is open in $\tau_V$.
 
         Let $K \in \langle U \rangle$.