diff --git a/inputs/lecture_22.tex b/inputs/lecture_22.tex
index 7f54090..33cabc4 100644
--- a/inputs/lecture_22.tex
+++ b/inputs/lecture_22.tex
@@ -181,8 +181,8 @@ For this we define
                 &&\text{then there are $k_m$, $k_n$, $\overline{z}$ such that}\\
                 &&\pi_j(\overline{x_n}) = \pi_j(\overline{z}), \forall k> j+1.~z_k = 1,\\
                 &&d(f^{k_m}(\overline{x_m}), f^{k_m}(\overline{z})) < \epsilon \text{ and }\\
-                &&d(f^{k_n}(\overline{x_n}), f^{k_n}(\overline{z})) < \epsilon
-                &&\} 
+                &&d(f^{k_n}(\overline{x_n}), f^{k_n}(\overline{z})) < \epsilon\\
+                &&\}
             \end{IEEEeqnarray*}
             Beleznay and Foreman show that this is open and dense.%
             \footnote{This is not relevant for the exam.}