diff --git a/inputs/lecture_22.tex b/inputs/lecture_22.tex index 7f54090..33cabc4 100644 --- a/inputs/lecture_22.tex +++ b/inputs/lecture_22.tex @@ -181,8 +181,8 @@ For this we define &&\text{then there are $k_m$, $k_n$, $\overline{z}$ such that}\\ &&\pi_j(\overline{x_n}) = \pi_j(\overline{z}), \forall k> j+1.~z_k = 1,\\ &&d(f^{k_m}(\overline{x_m}), f^{k_m}(\overline{z})) < \epsilon \text{ and }\\ - &&d(f^{k_n}(\overline{x_n}), f^{k_n}(\overline{z})) < \epsilon - &&\} + &&d(f^{k_n}(\overline{x_n}), f^{k_n}(\overline{z})) < \epsilon\\ + &&\} \end{IEEEeqnarray*} Beleznay and Foreman show that this is open and dense.% \footnote{This is not relevant for the exam.}