maximal isometric extension
Some checks are pending
Build latex and deploy / checkout (push) Waiting to run

This commit is contained in:
Josia Pietsch 2024-02-08 15:23:21 +01:00
parent 6d028bcfbd
commit af5ccd6c33
Signed by: josia
GPG key ID: E70B571D66986A2D

View file

@ -47,12 +47,13 @@ to reach the flow with a quasi-isometric system (cf.~\yaref{thm:l16:3},
For every flow $(X,T)$ there is a maximal factor $(Y,T)$, $\pi\colon X\to Y$,
i.e.~if $(Y',T), \pi'\colon X \to Y'$ is any isometric factor of $(X,T)$,
then $(Y',T)$ is a factor of $(Y,T)$.
% https://q.uiver.app/#q=WzAsMyxbMCwwLCIoWCxUKSJdLFsxLDEsIihZLFQpXFxcXFxcdGV4dHttYXhpbWFsIGlzb21ldHJpY30iXSxbMCwyLCIoWScsVCkiXSxbMCwyLCJcXHRleHR7aXNvbWV0cmljfSIsMl0sWzAsMV0sWzEsMiwiXFxleGlzdHMiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=
% https://q.uiver.app/#q=WzAsMyxbMCwwLCIoWCxUKSJdLFsxLDEsIiBcXHN1YnN0YWNreyhZLFQpXFxcXFxcdGV4dHttYXhpbWFsIGlzb21ldHJpY319Il0sWzAsMiwiXFxzdWJzdGFja3soWScsVClcXFxcXFx0ZXh0e2lzb21ldHJpY319Il0sWzAsMl0sWzAsMV0sWzEsMiwiXFxleGlzdHMiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=
\[\begin{tikzcd}
{(X,T)} \\
& { \substack{(Y,T)\\\text{maximal isometric}}} \\
{(Y',T)}
\arrow["{\text{isometric}}"', from=1-1, to=3-1]
{\substack{(Y',T)\\\text{isometric}}}
\arrow[from=1-1, to=3-1]
\arrow[from=1-1, to=2-2]
\arrow["\exists", dashed, from=2-2, to=3-1]
\end{tikzcd}\]
@ -64,16 +65,18 @@ to reach the flow with a quasi-isometric system (cf.~\yaref{thm:l16:3},
i.e.~if $(Y_\alpha, f_{\alpha,\beta})$,
$\beta < \alpha \le \Theta$
are isometric, then the inverse limit $Y$ is isometric.%
% https://q.uiver.app/#q=WzAsNCxbMSwwLCJZX1xcYWxwaGEiXSxbMSwxLCJZX1xcYmV0YSJdLFswLDAsIlkiXSxbMiwwLCJYIl0sWzAsMSwiZl97XFxhbHBoYSwgXFxiZXRhfSJdLFsyLDAsImZfXFxhbHBoYSJdLFsyLDEsImZfXFxiZXRhIiwyXSxbMywwLCJcXHBpX1xcYWxwaGEiLDJdLFszLDEsIlxccGlfXFxiZXRhIl1d
% https://q.uiver.app/#q=WzAsNCxbMSwxLCJZX1xcYWxwaGEiXSxbMSwyLCJZX1xcYmV0YSJdLFswLDEsIlkiXSxbMSwwLCJYIl0sWzAsMSwiZl97XFxhbHBoYSwgXFxiZXRhfSIsMV0sWzIsMCwiZl9cXGFscGhhIl0sWzIsMSwiZl9cXGJldGEiLDJdLFszLDAsIlxccGlfXFxhbHBoYSIsMV0sWzMsMSwiXFxwaV9cXGJldGEiLDEseyJjdXJ2ZSI6LTN9XV0=
\[\begin{tikzcd}
Y & {Y_\alpha} & X \\
& X \\
Y & {Y_\alpha} \\
& {Y_\beta}
\arrow["{f_{\alpha, \beta}}", from=1-2, to=2-2]
\arrow["{f_\alpha}", from=1-1, to=1-2]
\arrow["{f_\beta}"', from=1-1, to=2-2]
\arrow["{\pi_\alpha}"', from=1-3, to=1-2]
\arrow["{\pi_\beta}", from=1-3, to=2-2]
\arrow["{f_{\alpha, \beta}}"{description}, from=2-2, to=3-2]
\arrow["{f_\alpha}", from=2-1, to=2-2]
\arrow["{f_\beta}"', from=2-1, to=3-2]
\arrow["{\pi_\alpha}"{description}, from=1-2, to=2-2]
\arrow["{\pi_\beta}"{description}, curve={height=-18pt}, from=1-2, to=3-2]
\end{tikzcd}\]
\gist{%
Consider
\[
\Delta_\alpha \coloneqq \{(y,y') \in Y^2 : f_{\alpha}(y) = f_\alpha(y')\}.
@ -85,10 +88,10 @@ to reach the flow with a quasi-isometric system (cf.~\yaref{thm:l16:3},
\[
\bigcap_{\alpha \le \theta}\Delta_\alpha = \{(y,y) : y \in Y\}.
\]
Consider
\[\{(y,y') \in \Delta_\alpha : d(y,y') \ge \epsilon\}\]
for any $\epsilon > 0$.
By the finite intersection property % TODO WHY? TODO what is this TODO for compact?
Fix $\epsilon > 0$ and
consider
\[\{(y,y') \in \Delta_\alpha : d(y,y') \ge \epsilon\}.\]
By the finite intersection property
we get
\[
\exists \alpha.~f_\alpha(y) = f_\alpha(y') \implies d(y,y') < \epsilon,
@ -126,26 +129,53 @@ to reach the flow with a quasi-isometric system (cf.~\yaref{thm:l16:3},
\[
d(f^{-1}_\alpha(t_jz_j), f^{-1}_\alpha(t_jz'_j)) < \frac{\epsilon}{2} \lightning.
\]
}{
\begin{itemize}
\item Consider $\Delta_\alpha = \{(y,y') \in Y \times Y : f_\alpha(y) = f_\alpha(y')\} = Y \times_{Y_\alpha} Y$.
\begin{itemize}
\item $\beta < \alpha \implies \Delta_\beta \supseteq \Delta_\alpha$,
\item $\bigcap_{\alpha < \theta} \Delta_\alpha = \{(y,y) : y \in Y\}$.
\end{itemize}
\item Fix $\epsilon > 0$. Consider $M^{\epsilon}_{\alpha}\{(y,y') \in \Delta_\alpha : d(y,y') \ge \epsilon\}$.
FIP $\implies$ $\exists \alpha.~M^{\epsilon}_{\alpha} = \emptyset$,
i.e.~$\forall z \in Y_\alpha.~\diam(f^{-1}_\alpha(z)) \le \epsilon$.
\item Suppose $Y$ is not isometric (i.e.~not equicontinuous).
Then $\exists (y_j), (y'_j)$ in $Y$ with $d(y_j,y_j') \to 0$
and $\epsilon > 0, t_j \in T$ s.t.~$d(t_jy_j, t_jy_j') > \epsilon$.
\item Wlog.~$y_j \to y$, $y'_j \to y$.
Fix $\alpha$ s.t.~$M^{\frac{\epsilon}{4}}_\alpha = \emptyset$.
\item $f_\alpha(y_j), f_{\alpha}(y'_j)$ converge $ z \in Y_\alpha$,
equicontinuity of $Y_{\alpha} \implies d_{Y_\alpha}(t_jf_\alpha(y_j), t_jf_\alpha(y'_j)) \to 0$.
Wlog.~$t_jf_\alpha(y_j^{(')})$ converge to same point.
\item Consider $d(f^{-1}_\alpha(t_jf_\alpha(y_j)), f^{-1}_\alpha(t_jf_{\alpha}(y_{j}'))) \lessgtr \frac{\epsilon}{2}$ $\lightning$
\end{itemize}
}
\end{proof}
More generally we can show:
\begin{theorem}[{\cite[13.1]{Furstenberg}}]
\begin{theorem}[{\cite[Prop.~13.1]{Furstenberg}}]
Let $(X,T)$ be a distal flow
and $(Y,T) = \pi(X,T)$ a factor.
and $(Z,T) = \pi(X,T)$ a factor.
Then there exists an isometric extension $(Y,T)$ of $(Z,T)$
which is a factor of $(X,T)$,
such that $(Y,T)$ is maximal among such extensions,
i.e.~if $(Y',T)$ is any flow with these two properties,
then $(Y',T)$ is a factor of $(Y,T)$.
% https://q.uiver.app/#q=WzAsMyxbMCwwLCIoWCxUKSJdLFswLDIsIihaLFQpIl0sWzEsMSwiKFksVCkiXSxbMCwyXSxbMCwxLCJcXHBpIl0sWzIsMV1d
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXHN1YnN0YWNreyhYLFQpXFxcXFxcdGV4dHtkaXN0YWx9fSJdLFswLDMsIihaLFQpIl0sWzEsMSwiKFksVCkiXSxbMiwyLCIoWScsVCkiXSxbMCwyXSxbMCwxLCJcXHBpIl0sWzIsMSwiXFx0ZXh0e21heC5+aXNvLn0iLDFdLFswLDMsIiIsMix7ImN1cnZlIjotM31dLFszLDEsIlxcdGV4dHtpc28ufSIsMV0sWzIsMywiIiwxLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d
\[\begin{tikzcd}
{(X,T)} \\
{\substack{(X,T)\\\text{distal}}} \\
& {(Y,T)} \\
&& {(Y',T)} \\
{(Z,T)}
\arrow[from=1-1, to=2-2]
\arrow["\pi", from=1-1, to=3-1]
\arrow[from=2-2, to=3-1]
\end{tikzcd}\]
\arrow["\pi", from=1-1, to=4-1]
\arrow["{\text{max.~iso.}}"{description}, from=2-2, to=4-1]
\arrow[curve={height=-18pt}, from=1-1, to=3-3]
\arrow["{\text{iso.}}"{description}, from=3-3, to=4-1]
\arrow[dashed, from=2-2, to=3-3]
\end{tikzcd}
\]
Such a factor $(Y,T)$ is called a \vocab{maximal isometric extension} of $(Z,T)$.
\end{theorem}