This commit is contained in:
parent
e203c901e1
commit
ab088dd877
3 changed files with 102 additions and 39 deletions
|
@ -1,5 +1,3 @@
|
||||||
\subsection{Sheet 6}
|
|
||||||
|
|
||||||
\lecture{07}{2023-11-07}{}
|
\lecture{07}{2023-11-07}{}
|
||||||
|
|
||||||
\begin{proposition}
|
\begin{proposition}
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
\lecture{15}{2023-12-05}{}
|
\lecture{15}{2023-12-05}{}
|
||||||
|
|
||||||
\begin{theorem}[The Boundedness Theorem]
|
\begin{theorem}[Boundedness Theorem]
|
||||||
\yalabel{Boundedness Theorem}{Boundedness}{thm:boundedness}
|
\yalabel{Boundedness Theorem}{Boundedness}{thm:boundedness}
|
||||||
|
|
||||||
Let $X$ be Polish, $C \subseteq X$ coanalytic,
|
Let $X$ be Polish, $C \subseteq X$ coanalytic,
|
||||||
|
@ -19,27 +19,50 @@
|
||||||
are Borel subsets of $X$.
|
are Borel subsets of $X$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
% Let
|
Let
|
||||||
% \begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
% x \prec y&:\iff& x,y \in A \land \phi(x) < \phi(y)\\
|
x \prec y&:\iff& x,y \in A \land \phi(x) < \phi(y)\\
|
||||||
% &\iff& x,y \in A \land y \not\le_\phi^\ast x.
|
&\iff& x,y \in A \land y \not\le_\phi^\ast x.
|
||||||
% \end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
% Since $A$ is analytic,
|
Since $A$ is analytic,
|
||||||
% this relation is analytic and wellfounded on $X$.
|
this relation is analytic and wellfounded on $X$.
|
||||||
% By \yaref{thm:kunenmartin}
|
By \yaref{thm:kunenmartin}
|
||||||
% we get $\rho(\prec) < \omega_1$.
|
we get $\rho(\prec) < \omega_1$.
|
||||||
% Thus $\sup \{\phi(x) : x \in A\} < \omega_1$.
|
Thus $\sup \{\phi(x) : x \in A\} < \omega_1$.
|
||||||
%
|
|
||||||
% Since $D_\xi = \bigcup_{\eta < \xi} E_\xi$,
|
|
||||||
% it suffices to check $E_\xi \in \Sigma_1^1(X)$.
|
|
||||||
% If $\alpha = \sup \{\phi(x) : x \in C\}$,
|
|
||||||
% we have $E_\xi = E_\alpha$ for all $\alpha < \xi < \omega_1$.
|
|
||||||
|
|
||||||
\todo{TODO: Copy from official notes}
|
Since $D_\xi = \bigcup_{\eta < \xi} E_\xi$,
|
||||||
|
it suffices to check $E_\xi \in \Sigma_1^1(X)$.
|
||||||
|
Let $\alpha \coloneqq \sup \{\phi(x) : x \in C\}$.
|
||||||
|
Then $E_\xi = E_\alpha$ for all $\alpha < \xi < \omega_1$.
|
||||||
|
|
||||||
|
Consider $\xi \le \alpha$.
|
||||||
|
\begin{itemize}
|
||||||
|
\item If there exists $x_0 \in C$ with $\phi(x_0) \ge \xi$,
|
||||||
|
pick such $x_0$ of minimal rank.
|
||||||
|
Then for all $y \in X$ we have
|
||||||
|
\begin{IEEEeqnarray*}{rClr}
|
||||||
|
y \in E_\xi &\iff& y \in C \land \phi(y) \le \xi\\
|
||||||
|
&\iff& y \le^\ast_\phi x_0 & ~ \text{ coanalytic}\\
|
||||||
|
&\iff& x_0 \not<^\ast_\phi y & ~ \text{ analytic}\\
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
So $E_\xi$ is Borel.
|
||||||
|
% TODO If $\alpha < \omega_1$, this also shows that $E_\alpha$ is Borel?
|
||||||
|
\item If there exists no such $x_0$
|
||||||
|
then $\xi = \alpha$
|
||||||
|
and
|
||||||
|
\[
|
||||||
|
E_\xi = E_\alpha = \bigcup_{\eta < \alpha}
|
||||||
|
\]
|
||||||
|
is a countable union of Borel sets by the previous case.
|
||||||
|
\end{itemize}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\pagebreak
|
\pagebreak
|
||||||
\section{Abstract Topological Dynamics}
|
\section{Abstract Topological Dynamics}
|
||||||
|
|
||||||
|
% \subsection*{Basic Definitions}
|
||||||
|
% TODO: move to appendix?
|
||||||
|
|
||||||
Recall:
|
Recall:
|
||||||
\begin{definition}+
|
\begin{definition}+
|
||||||
Let $X$ be a set.
|
Let $X$ be a set.
|
||||||
|
@ -53,10 +76,30 @@ Recall:
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
Often we will abbreviate $\alpha(g,x)$ as $g\cdot x$.
|
Often we will abbreviate $\alpha(g,x)$ as $g\cdot x$.
|
||||||
|
|
||||||
|
|
||||||
|
For $x \in X$,
|
||||||
|
the \vocab{orbit} of $x$ is defined as
|
||||||
|
\[
|
||||||
|
G\cdot x \coloneqq \{g\cdot x : g \in G\}.
|
||||||
|
\]
|
||||||
|
|
||||||
|
A group action is called \vocab{transitive}
|
||||||
|
iff $g \mapsto g \cdot x$ is surjective for all $x \in X$,
|
||||||
|
i.e.~iff the action has exactly one orbit.
|
||||||
|
|
||||||
|
|
||||||
|
For $x \in X$,
|
||||||
|
the \vocab{stabilizer subgroup}
|
||||||
|
of $G$ with respect to $x$ is
|
||||||
|
\[
|
||||||
|
G_x \coloneqq \{g \in G : g\cdot x = x\}.
|
||||||
|
\]
|
||||||
|
|
||||||
\end{definition}
|
\end{definition}
|
||||||
\begin{remark}+
|
\begin{remark}+
|
||||||
Group actions of a group $G$ on a set $X$
|
Group actions of a group $G$ on a set $X$
|
||||||
correspond to group-homomorphisms
|
correspond to group homomorphisms
|
||||||
$G \to \Sym(X)$.
|
$G \to \Sym(X)$.
|
||||||
Indeed for a group action $\alpha\colon G \times X \to X$
|
Indeed for a group action $\alpha\colon G \times X \to X$
|
||||||
consider
|
consider
|
||||||
|
@ -66,7 +109,21 @@ Recall:
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
\end{remark}
|
\end{remark}
|
||||||
|
|
||||||
|
\begin{definition}+
|
||||||
|
A group $G$ with a topology
|
||||||
|
is a \vocab{topological group}
|
||||||
|
iff
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
G \times G&\longrightarrow & G \\
|
||||||
|
(x,y) &\longmapsto & x \cdot y
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
and
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
G&\longrightarrow & G \\
|
||||||
|
x&\longmapsto & x^{-1}
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
are continuous.
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
Let $T$ be a topological group\footnote{usually $T = \Z$ with the discrete topology}
|
Let $T$ be a topological group\footnote{usually $T = \Z$ with the discrete topology}
|
||||||
|
@ -111,19 +168,27 @@ Recall:
|
||||||
Recall that $S_1 = \{z \in \C : |z| = 1\}$.
|
Recall that $S_1 = \{z \in \C : |z| = 1\}$.
|
||||||
Let $X = S_1$, $T = S_1$
|
Let $X = S_1$, $T = S_1$
|
||||||
$(\alpha,\beta) \mapsto \alpha + \beta$ is isometric.%
|
$(\alpha,\beta) \mapsto \alpha + \beta$ is isometric.%
|
||||||
\footnote{Note that this means $x \cdot \alpha$ in complex numbers, but we consider the abelian group structure of $S^1$}
|
\footnote{Note that here we consider the abelian group structure of $S^1$
|
||||||
|
and $\alpha + \beta$ denotes the addition of \emph{angles},
|
||||||
|
i.e.~$\alpha \cdot \beta$ in complex numbers.}
|
||||||
\end{example}
|
\end{example}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
\label{def:isometricextension}
|
||||||
Let $X,Y$ be compact metric spaces
|
Let $X,Y$ be compact metric spaces
|
||||||
and $\pi\colon (X,T) \to (Y,T)$ a factor map.
|
and $\pi\colon (X,T) \to (Y,T)$ a factor map.
|
||||||
Then $(X,T)$ is an \vocab{isometric extension}
|
Then $(X,T)$ is an \vocab{isometric extension}
|
||||||
of $(Y,T)$ if there is a real valued $\rho$
|
of $(Y,T)$ if there is
|
||||||
defined on $\{(x_1,x_2) \in X^2 : \pi(x_1) = \pi(x_2)\}$
|
$\rho\colon X\times_Y X \to \R$%
|
||||||
|
\footnote{Recall that in the category of topological spaces
|
||||||
|
the \vocab{fiber product} of
|
||||||
|
$A \xrightarrow{f} C$, $B \xrightarrow{g} C$
|
||||||
|
is $A \times_C B = \{(a,b) \in A \times B: f(a) = g(b)\}$,
|
||||||
|
i.e. $X \times_Y X = \{(x_1,x_2) \in X^2 : \pi(x_1) = \pi(x_2)\}$.}
|
||||||
such that
|
such that
|
||||||
\begin{enumerate}[(a)]
|
\begin{enumerate}[(a)]
|
||||||
\item $\rho$ is continuous.
|
\item $\rho$ is continuous.
|
||||||
\item For each $y \in Y$, $\rho$ is a metric on the fibre
|
\item For each $y \in Y$, $\rho$ is a metric on the fiber
|
||||||
$X_y \coloneqq \{x \in X: \pi(x) = y\}$.
|
$X_y \coloneqq \{x \in X: \pi(x) = y\}$.
|
||||||
\item $\forall t \in T.~\rho(tx_1,tx_2) = \rho(x_1,x_2)$.
|
\item $\forall t \in T.~\rho(tx_1,tx_2) = \rho(x_1,x_2)$.
|
||||||
\item $\forall y,y' \in Y.~$
|
\item $\forall y,y' \in Y.~$
|
||||||
|
@ -135,6 +200,9 @@ Recall:
|
||||||
A flow is isometric iff it is an isometric extension
|
A flow is isometric iff it is an isometric extension
|
||||||
of the trivial flow,
|
of the trivial flow,
|
||||||
i.e.~the flow acting on a singleton.
|
i.e.~the flow acting on a singleton.
|
||||||
|
Indeed maps $\rho\colon X\times_\star X = X^2 \to 2$
|
||||||
|
as in \yaref{def:isometricextension}
|
||||||
|
correspond to metrics witnessing that the flow is isometric.
|
||||||
% TODO THINK ABOUT THIS!
|
% TODO THINK ABOUT THIS!
|
||||||
\end{remark}
|
\end{remark}
|
||||||
\begin{proposition}
|
\begin{proposition}
|
||||||
|
|
|
@ -27,7 +27,7 @@ $X$ is always compact metrizable.
|
||||||
and $n \in \Z \leadsto h^n$.
|
and $n \in \Z \leadsto h^n$.
|
||||||
Consider
|
Consider
|
||||||
\[
|
\[
|
||||||
\{h^n : n \in \Z\} \subseteq \cC(X,X) = \{f\colon X \to X : f \text{continuous}\},
|
\{h^n : n \in \Z\} \subseteq \cC(X,X) = \{f\colon X \to X : f \text{ continuous}\},
|
||||||
\]
|
\]
|
||||||
where the topology is the uniform convergence topology.
|
where the topology is the uniform convergence topology.
|
||||||
Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
|
Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
|
||||||
|
@ -35,20 +35,18 @@ $X$ is always compact metrizable.
|
||||||
\[
|
\[
|
||||||
\forall \epsilon > 0.~\exists \delta > 0.~d(x,y) < \delta \implies \forall n.~d(h^n(x), h^n(y)) < \epsilon
|
\forall \epsilon > 0.~\exists \delta > 0.~d(x,y) < \delta \implies \forall n.~d(h^n(x), h^n(y)) < \epsilon
|
||||||
\]
|
\]
|
||||||
we have by the Arzela-Ascoli-Theorem % TODO REF
|
we have by the Arzel\`a-Ascoli-Theorem % TODO REF
|
||||||
that $G$ is compact.
|
that $G$ is compact.
|
||||||
|
|
||||||
$G$ is a closure of a of a topological group,
|
$G$ is a closure of a topological group,
|
||||||
hence it is a topological group,
|
hence it is a topological group.
|
||||||
i.e.~$g \mapsto g^{-1}$ and $(g,h) \mapsto gh$ are continuous.
|
|
||||||
% TODO THINK ABOUT THIS
|
% TODO THINK ABOUT THIS
|
||||||
Moreover since $\Z$ is abelian,
|
Moreover since $\Z$ is abelian,
|
||||||
$\forall n,m \in \Z.~h^n \cdot h^m = h^m \cdot h^n$,
|
$\forall n,m \in \Z.~h^n \cdot h^m = h^m \cdot h^n$,
|
||||||
so $G$ is abelian.
|
so $G$ is abelian.
|
||||||
% TODO THINK ABOUT THIS
|
% TODO THINK ABOUT THIS
|
||||||
|
|
||||||
Take any $x \in X$ and consider
|
Take any $x \in X$ and consider the orbit
|
||||||
the orbit % TODO DEFINITION
|
|
||||||
$G \cdot x = \{f(x) : f \in G\}$.
|
$G \cdot x = \{f(x) : f \in G\}$.
|
||||||
Since $\Z \acts X$ is minimal,
|
Since $\Z \acts X$ is minimal,
|
||||||
i.e.~every orbit is dense,
|
i.e.~every orbit is dense,
|
||||||
|
@ -73,11 +71,11 @@ $X$ is always compact metrizable.
|
||||||
\end{subproof}
|
\end{subproof}
|
||||||
|
|
||||||
Since $G\cdot x$ is compact and dense,
|
Since $G\cdot x$ is compact and dense,
|
||||||
we get $G \cdot x = X$.
|
we get $G \cdot x = X$,
|
||||||
% TODO THINK ABOUT THIS
|
since compact subsets of Hausdorff spaces are closed.
|
||||||
|
|
||||||
Let $\Gamma = \{f \in G : f(x) = x\} < G$ % TODO \triangleright?
|
Let $\Gamma = \{f \in G : f(x) = x\} < G$
|
||||||
be the stabilizer group. % TODO DEFINITION
|
be the stabilizer group.
|
||||||
Then $\Gamma \subseteq G$ is closed.
|
Then $\Gamma \subseteq G$ is closed.
|
||||||
Take $K \coloneqq \faktor{G}{\Gamma}$ with the quotient topology.
|
Take $K \coloneqq \faktor{G}{\Gamma}$ with the quotient topology.
|
||||||
|
|
||||||
|
@ -89,7 +87,6 @@ $X$ is always compact metrizable.
|
||||||
$\Z \acts K \equiv \Z \acts X$
|
$\Z \acts K \equiv \Z \acts X$
|
||||||
% and $h$ is a claimed.
|
% and $h$ is a claimed.
|
||||||
\todo{Copy from official notes}
|
\todo{Copy from official notes}
|
||||||
% TODO Definition transitive group action.
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
Let $(X,T)$ be a flow
|
Let $(X,T)$ be a flow
|
||||||
|
|
Loading…
Reference in a new issue