moved definitions
Some checks failed
Build latex and deploy / checkout (push) Failing after 12m42s

This commit is contained in:
Josia Pietsch 2023-12-09 02:29:22 +01:00
parent e203c901e1
commit ab088dd877
Signed by: josia
GPG key ID: E70B571D66986A2D
3 changed files with 102 additions and 39 deletions

View file

@ -1,5 +1,3 @@
\subsection{Sheet 6}
\lecture{07}{2023-11-07}{} \lecture{07}{2023-11-07}{}
\begin{proposition} \begin{proposition}

View file

@ -1,6 +1,6 @@
\lecture{15}{2023-12-05}{} \lecture{15}{2023-12-05}{}
\begin{theorem}[The Boundedness Theorem] \begin{theorem}[Boundedness Theorem]
\yalabel{Boundedness Theorem}{Boundedness}{thm:boundedness} \yalabel{Boundedness Theorem}{Boundedness}{thm:boundedness}
Let $X$ be Polish, $C \subseteq X$ coanalytic, Let $X$ be Polish, $C \subseteq X$ coanalytic,
@ -19,27 +19,50 @@
are Borel subsets of $X$. are Borel subsets of $X$.
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
% Let Let
% \begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
% x \prec y&:\iff& x,y \in A \land \phi(x) < \phi(y)\\ x \prec y&:\iff& x,y \in A \land \phi(x) < \phi(y)\\
% &\iff& x,y \in A \land y \not\le_\phi^\ast x. &\iff& x,y \in A \land y \not\le_\phi^\ast x.
% \end{IEEEeqnarray*} \end{IEEEeqnarray*}
% Since $A$ is analytic, Since $A$ is analytic,
% this relation is analytic and wellfounded on $X$. this relation is analytic and wellfounded on $X$.
% By \yaref{thm:kunenmartin} By \yaref{thm:kunenmartin}
% we get $\rho(\prec) < \omega_1$. we get $\rho(\prec) < \omega_1$.
% Thus $\sup \{\phi(x) : x \in A\} < \omega_1$. Thus $\sup \{\phi(x) : x \in A\} < \omega_1$.
%
% Since $D_\xi = \bigcup_{\eta < \xi} E_\xi$,
% it suffices to check $E_\xi \in \Sigma_1^1(X)$.
% If $\alpha = \sup \{\phi(x) : x \in C\}$,
% we have $E_\xi = E_\alpha$ for all $\alpha < \xi < \omega_1$.
\todo{TODO: Copy from official notes} Since $D_\xi = \bigcup_{\eta < \xi} E_\xi$,
it suffices to check $E_\xi \in \Sigma_1^1(X)$.
Let $\alpha \coloneqq \sup \{\phi(x) : x \in C\}$.
Then $E_\xi = E_\alpha$ for all $\alpha < \xi < \omega_1$.
Consider $\xi \le \alpha$.
\begin{itemize}
\item If there exists $x_0 \in C$ with $\phi(x_0) \ge \xi$,
pick such $x_0$ of minimal rank.
Then for all $y \in X$ we have
\begin{IEEEeqnarray*}{rClr}
y \in E_\xi &\iff& y \in C \land \phi(y) \le \xi\\
&\iff& y \le^\ast_\phi x_0 & ~ \text{ coanalytic}\\
&\iff& x_0 \not<^\ast_\phi y & ~ \text{ analytic}\\
\end{IEEEeqnarray*}
So $E_\xi$ is Borel.
% TODO If $\alpha < \omega_1$, this also shows that $E_\alpha$ is Borel?
\item If there exists no such $x_0$
then $\xi = \alpha$
and
\[
E_\xi = E_\alpha = \bigcup_{\eta < \alpha}
\]
is a countable union of Borel sets by the previous case.
\end{itemize}
\end{proof} \end{proof}
\pagebreak \pagebreak
\section{Abstract Topological Dynamics} \section{Abstract Topological Dynamics}
% \subsection*{Basic Definitions}
% TODO: move to appendix?
Recall: Recall:
\begin{definition}+ \begin{definition}+
Let $X$ be a set. Let $X$ be a set.
@ -53,10 +76,30 @@ Recall:
\end{itemize} \end{itemize}
Often we will abbreviate $\alpha(g,x)$ as $g\cdot x$. Often we will abbreviate $\alpha(g,x)$ as $g\cdot x$.
For $x \in X$,
the \vocab{orbit} of $x$ is defined as
\[
G\cdot x \coloneqq \{g\cdot x : g \in G\}.
\]
A group action is called \vocab{transitive}
iff $g \mapsto g \cdot x$ is surjective for all $x \in X$,
i.e.~iff the action has exactly one orbit.
For $x \in X$,
the \vocab{stabilizer subgroup}
of $G$ with respect to $x$ is
\[
G_x \coloneqq \{g \in G : g\cdot x = x\}.
\]
\end{definition} \end{definition}
\begin{remark}+ \begin{remark}+
Group actions of a group $G$ on a set $X$ Group actions of a group $G$ on a set $X$
correspond to group-homomorphisms correspond to group homomorphisms
$G \to \Sym(X)$. $G \to \Sym(X)$.
Indeed for a group action $\alpha\colon G \times X \to X$ Indeed for a group action $\alpha\colon G \times X \to X$
consider consider
@ -66,7 +109,21 @@ Recall:
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
\end{remark} \end{remark}
\begin{definition}+
A group $G$ with a topology
is a \vocab{topological group}
iff
\begin{IEEEeqnarray*}{rCl}
G \times G&\longrightarrow & G \\
(x,y) &\longmapsto & x \cdot y
\end{IEEEeqnarray*}
and
\begin{IEEEeqnarray*}{rCl}
G&\longrightarrow & G \\
x&\longmapsto & x^{-1}
\end{IEEEeqnarray*}
are continuous.
\end{definition}
\begin{definition} \begin{definition}
Let $T$ be a topological group\footnote{usually $T = \Z$ with the discrete topology} Let $T$ be a topological group\footnote{usually $T = \Z$ with the discrete topology}
@ -111,19 +168,27 @@ Recall:
Recall that $S_1 = \{z \in \C : |z| = 1\}$. Recall that $S_1 = \{z \in \C : |z| = 1\}$.
Let $X = S_1$, $T = S_1$ Let $X = S_1$, $T = S_1$
$(\alpha,\beta) \mapsto \alpha + \beta$ is isometric.% $(\alpha,\beta) \mapsto \alpha + \beta$ is isometric.%
\footnote{Note that this means $x \cdot \alpha$ in complex numbers, but we consider the abelian group structure of $S^1$} \footnote{Note that here we consider the abelian group structure of $S^1$
and $\alpha + \beta$ denotes the addition of \emph{angles},
i.e.~$\alpha \cdot \beta$ in complex numbers.}
\end{example} \end{example}
\begin{definition} \begin{definition}
\label{def:isometricextension}
Let $X,Y$ be compact metric spaces Let $X,Y$ be compact metric spaces
and $\pi\colon (X,T) \to (Y,T)$ a factor map. and $\pi\colon (X,T) \to (Y,T)$ a factor map.
Then $(X,T)$ is an \vocab{isometric extension} Then $(X,T)$ is an \vocab{isometric extension}
of $(Y,T)$ if there is a real valued $\rho$ of $(Y,T)$ if there is
defined on $\{(x_1,x_2) \in X^2 : \pi(x_1) = \pi(x_2)\}$ $\rho\colon X\times_Y X \to \R$%
\footnote{Recall that in the category of topological spaces
the \vocab{fiber product} of
$A \xrightarrow{f} C$, $B \xrightarrow{g} C$
is $A \times_C B = \{(a,b) \in A \times B: f(a) = g(b)\}$,
i.e. $X \times_Y X = \{(x_1,x_2) \in X^2 : \pi(x_1) = \pi(x_2)\}$.}
such that such that
\begin{enumerate}[(a)] \begin{enumerate}[(a)]
\item $\rho$ is continuous. \item $\rho$ is continuous.
\item For each $y \in Y$, $\rho$ is a metric on the fibre \item For each $y \in Y$, $\rho$ is a metric on the fiber
$X_y \coloneqq \{x \in X: \pi(x) = y\}$. $X_y \coloneqq \{x \in X: \pi(x) = y\}$.
\item $\forall t \in T.~\rho(tx_1,tx_2) = \rho(x_1,x_2)$. \item $\forall t \in T.~\rho(tx_1,tx_2) = \rho(x_1,x_2)$.
\item $\forall y,y' \in Y.~$ \item $\forall y,y' \in Y.~$
@ -135,6 +200,9 @@ Recall:
A flow is isometric iff it is an isometric extension A flow is isometric iff it is an isometric extension
of the trivial flow, of the trivial flow,
i.e.~the flow acting on a singleton. i.e.~the flow acting on a singleton.
Indeed maps $\rho\colon X\times_\star X = X^2 \to 2$
as in \yaref{def:isometricextension}
correspond to metrics witnessing that the flow is isometric.
% TODO THINK ABOUT THIS! % TODO THINK ABOUT THIS!
\end{remark} \end{remark}
\begin{proposition} \begin{proposition}

View file

@ -27,7 +27,7 @@ $X$ is always compact metrizable.
and $n \in \Z \leadsto h^n$. and $n \in \Z \leadsto h^n$.
Consider Consider
\[ \[
\{h^n : n \in \Z\} \subseteq \cC(X,X) = \{f\colon X \to X : f \text{continuous}\}, \{h^n : n \in \Z\} \subseteq \cC(X,X) = \{f\colon X \to X : f \text{ continuous}\},
\] \]
where the topology is the uniform convergence topology. where the topology is the uniform convergence topology.
Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$. Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
@ -35,20 +35,18 @@ $X$ is always compact metrizable.
\[ \[
\forall \epsilon > 0.~\exists \delta > 0.~d(x,y) < \delta \implies \forall n.~d(h^n(x), h^n(y)) < \epsilon \forall \epsilon > 0.~\exists \delta > 0.~d(x,y) < \delta \implies \forall n.~d(h^n(x), h^n(y)) < \epsilon
\] \]
we have by the Arzela-Ascoli-Theorem % TODO REF we have by the Arzel\`a-Ascoli-Theorem % TODO REF
that $G$ is compact. that $G$ is compact.
$G$ is a closure of a of a topological group, $G$ is a closure of a topological group,
hence it is a topological group, hence it is a topological group.
i.e.~$g \mapsto g^{-1}$ and $(g,h) \mapsto gh$ are continuous.
% TODO THINK ABOUT THIS % TODO THINK ABOUT THIS
Moreover since $\Z$ is abelian, Moreover since $\Z$ is abelian,
$\forall n,m \in \Z.~h^n \cdot h^m = h^m \cdot h^n$, $\forall n,m \in \Z.~h^n \cdot h^m = h^m \cdot h^n$,
so $G$ is abelian. so $G$ is abelian.
% TODO THINK ABOUT THIS % TODO THINK ABOUT THIS
Take any $x \in X$ and consider Take any $x \in X$ and consider the orbit
the orbit % TODO DEFINITION
$G \cdot x = \{f(x) : f \in G\}$. $G \cdot x = \{f(x) : f \in G\}$.
Since $\Z \acts X$ is minimal, Since $\Z \acts X$ is minimal,
i.e.~every orbit is dense, i.e.~every orbit is dense,
@ -73,11 +71,11 @@ $X$ is always compact metrizable.
\end{subproof} \end{subproof}
Since $G\cdot x$ is compact and dense, Since $G\cdot x$ is compact and dense,
we get $G \cdot x = X$. we get $G \cdot x = X$,
% TODO THINK ABOUT THIS since compact subsets of Hausdorff spaces are closed.
Let $\Gamma = \{f \in G : f(x) = x\} < G$ % TODO \triangleright? Let $\Gamma = \{f \in G : f(x) = x\} < G$
be the stabilizer group. % TODO DEFINITION be the stabilizer group.
Then $\Gamma \subseteq G$ is closed. Then $\Gamma \subseteq G$ is closed.
Take $K \coloneqq \faktor{G}{\Gamma}$ with the quotient topology. Take $K \coloneqq \faktor{G}{\Gamma}$ with the quotient topology.
@ -89,7 +87,6 @@ $X$ is always compact metrizable.
$\Z \acts K \equiv \Z \acts X$ $\Z \acts K \equiv \Z \acts X$
% and $h$ is a claimed. % and $h$ is a claimed.
\todo{Copy from official notes} \todo{Copy from official notes}
% TODO Definition transitive group action.
\end{proof} \end{proof}
\begin{definition} \begin{definition}
Let $(X,T)$ be a flow Let $(X,T)$ be a flow