This commit is contained in:
parent
ef3b65edbd
commit
8f86b71d92
3 changed files with 241 additions and 3 deletions
|
@ -92,7 +92,9 @@ i.e.~the set of all ultrafilters on $\N$
|
|||
with the topology given by open sets $V_{A} = \{ p \in \beta\N : A \in P\} $
|
||||
for $A \subseteq \N$.
|
||||
|
||||
This is a compact Hausdorff space.\todo{Homework}
|
||||
This is a compact Hausdorff space.%
|
||||
\footnote{cf.~\yaref{fact:bNhd}, \yaref{fact:bNcompact}}%
|
||||
\todo{move facts}
|
||||
We can turn it into a compact semigroup:
|
||||
Consider $+ \colon \N \times \N \to \N$.
|
||||
This gives an operation on principal ultrafilters
|
||||
|
@ -169,8 +171,6 @@ is not necessarily continuous.
|
|||
&=& T^\cU(T^\cV(x)).
|
||||
\end{IEEEeqnarray*}
|
||||
\end{proof}
|
||||
|
||||
|
||||
\todo{Homework: Check the details that were omitted during the lecture.}
|
||||
|
||||
|
||||
|
|
237
inputs/lecture_25.tex
Normal file
237
inputs/lecture_25.tex
Normal file
|
@ -0,0 +1,237 @@
|
|||
\lecture{25}{2024-01-26}{}
|
||||
|
||||
Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
||||
\begin{fact}
|
||||
\begin{itemize}
|
||||
\item This is a topological space,
|
||||
where a basis consist of sets
|
||||
$V_A \coloneqq \{p \in \beta\N : A \in p\}, A \subseteq \N$.
|
||||
|
||||
(For $A, B \subseteq \N$ we have $V_{A \cap B} = V_{A} \cap V_B$
|
||||
and $\beta\N = V_\N$.)
|
||||
|
||||
\item Note also that for $A, B \subseteq \N$,
|
||||
$V_{A \cup B} = V_A \cup V_B$,
|
||||
$V_{A^c} = \beta\N \setminus V_A$.
|
||||
\end{itemize}
|
||||
\end{fact}
|
||||
|
||||
\begin{observe}
|
||||
\label{ob:bNclopenbasis}
|
||||
Note that the basis is clopen. In particular
|
||||
any closed set can be written as an intersection of sets
|
||||
of the form $V_A$:
|
||||
|
||||
If $F$ is closed, then $U = \beta\N \setminus F = \bigcup_{i\in I} V_{A_i}$,
|
||||
so $F = \bigcap_{i \in I} V_{\N \setminus A_i}$.
|
||||
\end{observe}
|
||||
|
||||
\begin{fact}
|
||||
\label{fact:bNhd}
|
||||
$\beta\N$ is Hausdorff.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
Let $\cU \neq \cV \in \beta\N$.
|
||||
Then there is some $A \in \cU \setminus \cV$,
|
||||
so $A^c \in \cV$,
|
||||
so $\cU \in V_A$ and $\cV \in V_A^c$.
|
||||
\end{proof}
|
||||
%\begin{remark}+
|
||||
% This even shows that $\beta\N$ is totally separated.
|
||||
% In fact, $\beta\N$ is a profinite space,
|
||||
% as the next fact shows.
|
||||
%\end{remark}
|
||||
\begin{fact}
|
||||
\label{fact:bNcompact}
|
||||
$\beta\N$ is compact.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
Let $\{F_i\}_{i \in I}$ be non-empty
|
||||
and closed
|
||||
such that
|
||||
for any $i_1,\ldots., i_k \in I$,
|
||||
$k \in \N$,
|
||||
$\bigcap_{j=1}^k F_{i_j} \neq \emptyset$.
|
||||
|
||||
We need to show that $\bigcap_{i \in I} F_i \neq \emptyset$.
|
||||
Replacing each $F_i$ by $V_{A_j^i}$ such
|
||||
that $F_i = \bigcap_{j \in J_i} V_{A_j^i}$
|
||||
(cf.~\yaref{ob:bNclopenbasis})
|
||||
we may assume that $F_i$ is of the form $V_{A_i}$.
|
||||
We get $\{F_i = V_{A_i} : i \in I\}$
|
||||
with the finite intersection property.
|
||||
Hence
|
||||
$\{A_i : i \in I\} \mathbin{\text{\reflectbox{$\coloneqq$}}} \cF_0$
|
||||
has the finite intersection property.
|
||||
|
||||
Then $\cF = \{A \subseteq \N : A \supseteq A_{i_1} \cap \ldots \cap A_{i_k}, k \in \N, i_1, \ldots, i_k \in I\}$
|
||||
is a filter.
|
||||
|
||||
Let $\cU$ be an ultrafilter extending $\cF$.
|
||||
Then $\cU \in \bigcap_{i \in I} V_{A_i} = \bigcap_{i \in I} F_i$.
|
||||
\end{proof}
|
||||
\begin{fact}
|
||||
Consider $\N$ as a subspace of $\beta\N$
|
||||
via $\N \hookrightarrow \beta\N, n \mapsto \hat{n} \coloneqq \{A \subseteq \N : n \in A\}$.
|
||||
Then
|
||||
\begin{itemize}
|
||||
\item $ \{\hat{n}\} $ is open in $\beta\N$ for all $n \in \N$.
|
||||
\item $\N \subseteq \beta\N$ is dense.
|
||||
\end{itemize}
|
||||
\todo{Easy exercise}
|
||||
% TODO write down (exercise)
|
||||
\end{fact}
|
||||
|
||||
\begin{theorem}
|
||||
For every compact Hausdorff space $X$,
|
||||
a sequence $(x_n)$ in $X$,
|
||||
and $\cU \in \beta\N$,
|
||||
we have that $\cU-\lim_n x_n = x$
|
||||
exists and is unique,
|
||||
i.e.~for all $x \in G \overset{\text{open}}{\subseteq} X$
|
||||
we have $\{n \in \N : x_n \in G\} \in \cU$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
Towards a contradiction
|
||||
assume that there is no such $x$.
|
||||
|
||||
For every $x$ take $x \in G_x \overset{\text{open}}{\subseteq} X$
|
||||
such that
|
||||
$\{ n \in \N : x_n \in G_x\} \not\in \cU$.
|
||||
So $\{G_x\}_{x \in X}$ is an open cover of $X$.
|
||||
Since $X$ is compact,
|
||||
there exists a finite subcover
|
||||
$G_{x_1}, \ldots, G_{x_m}$.
|
||||
|
||||
But then
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\N &=& \{ n \in \N : x_n \in \bigcup_{i=1}^m G_{x_i}\}\\
|
||||
&=& \underbrace{\bigcup_{i=1}^m \overbrace{\{n \in \N : x_n \in G_{x_i}\}}^{\not\in \cU}}_{\not\in \cU},
|
||||
\end{IEEEeqnarray*}
|
||||
since $B_1 \cup \ldots \cup B_m \in \cU \iff \exists i < m.~B_i \in \cU$.
|
||||
|
||||
It is clear that $\cU-\lim_n x_n$
|
||||
is unique, since $X$ is Hausdorff.
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem}
|
||||
Let $X$ be a compact Hausdorff space.
|
||||
For any $f\colon \N \to X$
|
||||
there is a unique continuous extension $\tilde{f}\colon \beta\N \to X$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
Let
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\tilde{f}\colon \beta\N &\longrightarrow & X \\
|
||||
\cU &\longmapsto & \cU-\lim_n f(n).
|
||||
\end{IEEEeqnarray*}
|
||||
\todo{Exercise: Check that $\tilde{f}$ is continuous.}
|
||||
|
||||
$\tilde{f}$ is uniquely determined,
|
||||
since $\N \subseteq \beta\N$ is dense.
|
||||
% TODO general fact: continuous functions agreeing on a dense set
|
||||
% agree everywhere (fact section)
|
||||
\end{proof}
|
||||
|
||||
% RECAP
|
||||
\gist{%
|
||||
$\beta\N$ is equipped with $+$ which extends $+\colon \N \times \N \to \N$,
|
||||
\[
|
||||
\cU + \cV = \{A \subseteq \N : (\cU m)\left( (\cU n) \{m+n \in A\} \right)\}.
|
||||
\]
|
||||
This is associative, but not commutative.
|
||||
}{}
|
||||
% END RECAP
|
||||
\begin{fact}
|
||||
$+\colon \beta\N\times \beta\N \to \beta\N$
|
||||
is left continuous,
|
||||
i.e.~for $\cV$ fixed,
|
||||
$\cU \mapsto \cU + \cV$ is continuous.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
Fix $A$ and consider $V_A$.
|
||||
We need to show that the inverse image of $V_A$ is open.
|
||||
|
||||
We have
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\cU + \cV \in V_A &\iff& A \in \cU + \cV\\
|
||||
&\iff& (\cU_m)(\cV_n) \{m+n \in A\}\\
|
||||
&\iff& \{m \in \N : (\cV n) m+n \in A\} \in \cU\\
|
||||
&\iff& \cU \in V_{\{m \in \N: (\cV n) m+n \in A\}}.
|
||||
\end{IEEEeqnarray*}
|
||||
\end{proof}
|
||||
\begin{corollary}
|
||||
$(\beta\N,+)$
|
||||
is a %(left)
|
||||
\vocab{compact semigroup},
|
||||
i.e.~it is comapct, Hausdorff, associative and left-continuous.%
|
||||
%\footnote{There is no convention on left and right.}
|
||||
\end{corollary}
|
||||
So we can apply the \yaref{lem:ellisnumakura}
|
||||
to obtain
|
||||
\begin{corollary}
|
||||
There is $\cU \in \beta\N$
|
||||
such that $\cU + \cU = \cU$.
|
||||
\end{corollary}
|
||||
\begin{observe}
|
||||
Principal ultrafilters $\neq \hat{0}$ are not idempotent.
|
||||
We can restrict to $\beta\N \setminus \N$
|
||||
to get an idempotent element that is not principal.
|
||||
% TODO THINK ABOUT THIS
|
||||
\end{observe}
|
||||
|
||||
\begin{theorem}[Hindman]
|
||||
If $\N$ is partitioned into finitely many
|
||||
sets,
|
||||
then there is is an infinite subset $H \subseteq \N$
|
||||
such that all finite sums of distinct
|
||||
elements of $H$
|
||||
belong to the same set of the partition.
|
||||
\end{theorem}
|
||||
\begin{proof}[Galvin,Glazer]
|
||||
Let $\cU \in \beta\N \setminus \N$
|
||||
be such that $\cU + \cU = \cU$.
|
||||
Let $P$ be the piece of the partition
|
||||
that is in $\cU$.
|
||||
So $(\cU n ) n \in P$.
|
||||
Let us define a sequence $x_1,x_2,\ldots$
|
||||
\begin{itemize}
|
||||
\item $\cU$ is idempotent,
|
||||
so $(\cU n)(\cU k) n+k \in P$.
|
||||
We get
|
||||
\[(\cU n) \left( n \in P \land (\cU_k) n+k \in P \right)\].
|
||||
Pick $x_1$ that satisfies this,
|
||||
i.e.~$x_1 \in P$ and $(\cU_k) x_1+k \in P$.
|
||||
\item $\cU$ is idempotent,
|
||||
so
|
||||
\[
|
||||
(\cU n)[
|
||||
n \in P
|
||||
\land (\cU_k) n + k \in P
|
||||
\land x_1 + n \in P
|
||||
\land (\cU_k) x_1 + n + k \in P
|
||||
]
|
||||
\]
|
||||
Take $x_2 > x_1$ that satisfies this.
|
||||
\item Suppose we have chosen $\langle x_i : i < n \rangle$.
|
||||
Since $\cU$ is idempotent, we have
|
||||
\[
|
||||
(\cU n)[
|
||||
n \in P
|
||||
\land (\cU_k) n + k \in P
|
||||
\land \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n \in P)
|
||||
\land (\cU_k)\left( \forall {I \subseteq n}.~ (\sum_{i \in I} x_i + n + k) \in P\right).
|
||||
\]
|
||||
Chose $x_n > x_{n-1}$ that satisfies this.
|
||||
\end{itemize}
|
||||
Set $H \coloneqq \{x_i : i < \omega\}$.
|
||||
|
||||
|
||||
\end{proof}
|
||||
|
||||
|
||||
Next time we'll see another proof of this theorem.
|
||||
|
||||
|
||||
|
||||
|
|
@ -51,6 +51,7 @@
|
|||
\input{inputs/lecture_22}
|
||||
\input{inputs/lecture_23}
|
||||
\input{inputs/lecture_24}
|
||||
\input{inputs/lecture_25}
|
||||
|
||||
\cleardoublepage
|
||||
|
||||
|
|
Loading…
Reference in a new issue