From 53577d9b57a90602a2ca1a228aab4e879d18f918 Mon Sep 17 00:00:00 2001 From: Josia Pietsch Date: Tue, 30 Jan 2024 18:50:21 +0100 Subject: [PATCH] tutorial 14 --- inputs/tutorial_14.tex | 162 +++++++++++++++++++++++++++++++++++++++++ logic3.tex | 1 + 2 files changed, 163 insertions(+) create mode 100644 inputs/tutorial_14.tex diff --git a/inputs/tutorial_14.tex b/inputs/tutorial_14.tex new file mode 100644 index 0000000..580ed34 --- /dev/null +++ b/inputs/tutorial_14.tex @@ -0,0 +1,162 @@ +\tutorial{14}{2024-01-30}{} + +\subsection{Sheet 12} +\nr 1 +% Examinable + +% TODO (there is a more direct way to do it, not using analytic / coanalytic) +\nr 2 +% Examinable + + +\nr 3 +% somewhat examinable (for 1.0) + +\nr 4 + +% Examinable! + +% RECAP +Let $X$ be a metrizable topological space. + +Let $K(X) \coloneqq \{ K \subseteq X : \text{ compact}\}$. + +The Vietoris topology has a basis given by +$\{K \subseteq U\}$, $U$ open (type 1) +and $\{K : K \cap U \neq \emptyset\}$, $U$ open (type 2). + +The Hausdorff metric on $K(X)$, +$d_H(K,L)$ is the smallest $\epsilon$ +such that $K \subseteq B_{\epsilon}(L) \land L \subseteq B_\epsilon(K)$. +This is equal to the maximal point to set distance, +$\max_{a \in A} d(a,B)$. + +On previous sheets, we checked that $d_H$ is a metric. +If $X$ is separable, then so is $K(X)$. +% END RECAP + +\begin{fact} +Let $(X,d)$ be a complete metric space. +Then so is $(K(X), d_H)$. +\end{fact} +\begin{proof} + We need to show that $(K(X), d_H)$ is complete. + + Let $(K_n)_{ n< \omega}$ be Cauchy in $(K(X), d_H)$. + Wlog.~$K_n \neq \emptyset$ for all $n$. + + Let $K = \{ x \in X : \forall x \in U \overset{\text{open}}{\subseteq} X.~ + \text{ $X$ intersects $K_n$ for infinitely many $n$}\}$. + + Equivalently, + $K = \{x : x \text{ is a cluster point of some subsequence $(x_n)$ with $x_n \in K_n$ for all $K_n$}\}$. + + (A cluster point is a limit of some subsequence). + + \begin{claim} + $K_n \to K$. + \end{claim} + \begin{subproof} + Note that $K$ is closed (the complement is open). + + + \begin{claim} + $K \neq \emptyset$. + \end{claim} + \begin{subproof} + As $(K_n)$ is Cauchy, + there exists a sequence $(x_n)$ with $x_n \in K_n$ + such that there exists a subsequence $(x_{n_i})$ + with $d(x_{n_i}, x_{n_{i+1}}) < \frac{1}{2^{i+1}}$. + + Let $n_0,n_1,\ldots$ + be such that $d_H(K_a, K_b) < 2^{-i-1}$ + for $a,b \ge n_i$. + + Pick $x_{n_0} \in K_{n_0}$. + Then let $x_{n_{i+1}} \in K_{n_{i+1}}$ be such that + $d(x_{n_i}, x_{n_{i+1}})$ is minimal. + + Then $x_{n_i} \xrightarrow{i \to \infty} x$ + and we have $x \in K$. + \end{subproof} + + \begin{claim} + $K$ is compact. + \end{claim} + \begin{subproof} + We show that $K$ is complete and totally bounded. + Since $K$ is a closed subset of a complete + space, it is complete. + + So it suffices to show that $K$ is totally bounded. + Let $\epsilon > 0$ + Take $N$ such that $d_H(K_i,K_j) < \epsilon$ + for all $i,j \ge N$. + + Cover $K_N$ with finitely many $\epsilon$-balls + with centers $z_i$. + + Take $x \in K$. + Then the $\epsilon$-ball around $x$ intersects $K_j$ + for some $j \ge N$, so + there exists $z_i$ such that $d(x,z_i) < 3\epsilon$. + + Note that a subset of a bigger space is totally + bounded iff it is totally bounded in itself. + \end{subproof} + + Now we show that $K_n \to K$ + in $K(X)$. + + Let $\epsilon > 0$. + Take $N$ such that for all $m,n \ge N$, + $d_H(K_m,K_n) < \frac{\epsilon}{2}$. + We'll first show that $\delta(K, K_n) < \epsilon$ for all $n > N$. + + Let $x \in K$. + Take $(x_{n_i})$ with $x_{n_i} \in K_{n_i}, x_{n_i} \to x$. + Then for large $i$, + we have $n_i \ge N$ and $d(x_{n_i}, x) < \frac{\epsilon}{2}$. + Take $n \ge N$. + Then there exists $y_n \in K_n$ + with $d(y_n, x_{n_i}) < \frac{\epsilon}{2}$. + So $d(x,y_n) < \epsilon$. + + + Now show that $\delta(K_n, K) < \epsilon$ for all $n \ge N$. + + Take $y \in K_n$. + Show that $d(y,K) < \epsilon$. + To do this, construct a sequence of $y_{n_i} \in K_{n_i}$ + starting with $y$ such that $d(y_{n_i}, y_{n_{i+1}}) < \frac{\epsilon}{2^{i+2}}$. + (same trick as before). + \end{subproof} + +\end{proof} + +\begin{fact} + If $X$ is compact metrisable, + then so is $K(X)$. +\end{fact} +\begin{proof} + We have just shown that $X$ is complete. + So it suffices to show that it is totally bounded. + + Let $\epsilon > 0$. + Cover $X$ with finitely many $\epsilon$-balls. + Let $F$ be the set of the centers of these balls. + + Consider $\cP(F) \setminus \{\emptyset\}$. + Clearly $\{B_x^{d_H} : x \in \cP(F) \setminus \{\emptyset\} \}$ + is a finite cover of $K(X)$. +\end{proof} + + +% TODO complete and totally bounded Sutherland metric and topological spaces + + + + + + diff --git a/logic3.tex b/logic3.tex index c384d5c..16ee483 100644 --- a/logic3.tex +++ b/logic3.tex @@ -73,6 +73,7 @@ \input{inputs/tutorial_11} \input{inputs/tutorial_12b} \input{inputs/tutorial_12} +\input{inputs/tutorial_14} \section{Facts} \input{inputs/facts}