initial commit
This commit is contained in:
parent
503e91edfe
commit
8359683da6
6 changed files with 431 additions and 7 deletions
|
@ -1,7 +1,7 @@
|
||||||
# Logic 3: Abstract Topological Dynamics and Descriptive Set Theory
|
# Logic 3: Abstract Topological Dynamics and Descriptive Set Theory
|
||||||
|
|
||||||
These are my notes on the lecture Logic 3: Abstract Topological Dynamics and Descriptive Set Theory,
|
These are my notes on the lecture Logic 3: Abstract Topological Dynamics and Descriptive Set Theory,
|
||||||
taught by [TODO]
|
taught by Aleksandra Kwiatkowska
|
||||||
in the winter 23/24 at the University Münster.
|
in the winter 23/24 at the University Münster.
|
||||||
|
|
||||||
**This is not an official script.**
|
**This is not an official script.**
|
||||||
|
|
17
inputs/intro.tex
Normal file
17
inputs/intro.tex
Normal file
|
@ -0,0 +1,17 @@
|
||||||
|
These are my notes on the lecture Probability Theory,
|
||||||
|
taught by \textsc{Aleksandra Kwiatkowska}
|
||||||
|
in the summer term 2023 at the University Münster.
|
||||||
|
|
||||||
|
\begin{warning}
|
||||||
|
This is not an official script.
|
||||||
|
The official lecture notes can be found on
|
||||||
|
\href{https://sites.google.com/site/akwiatkmath/teaching/logic-3-abstract-topological-dynamics-and-descriptive-set-theory}{here}.
|
||||||
|
\end{warning}
|
||||||
|
|
||||||
|
If you find errors or want to improve something,
|
||||||
|
please send me a message:\\
|
||||||
|
\texttt{lecturenotes@jrpie.de}.
|
||||||
|
|
||||||
|
This notes follow the way the material was presented in the lecture rather
|
||||||
|
closely. Additions (e.g.~from exercise sheets)
|
||||||
|
and slight modifications have been marked with $\dagger$.
|
260
inputs/lecture_01.tex
Normal file
260
inputs/lecture_01.tex
Normal file
|
@ -0,0 +1,260 @@
|
||||||
|
\lecture{01}{2023-10-10}{Introduction}
|
||||||
|
\section{Introduction}
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
Let $X$ be a nonempty topological space.
|
||||||
|
We say that $X$ is a \vocab{Polish space}
|
||||||
|
if $X$ is
|
||||||
|
\begin{itemize}
|
||||||
|
\item \vocab{separable},
|
||||||
|
i.e.~there exists a countable dense subset, and
|
||||||
|
\item \vocab{completely metrisable},
|
||||||
|
i.e.~there exists a complete metric on $X$
|
||||||
|
which induces the topology.
|
||||||
|
\end{itemize}
|
||||||
|
\end{definition}
|
||||||
|
Note that Polishness is preserved under homeomorphisms,
|
||||||
|
i.e.~it is really a topological property.
|
||||||
|
|
||||||
|
\begin{example}
|
||||||
|
\begin{itemize}
|
||||||
|
\item $\R$ is a Polish space,
|
||||||
|
\item $\R^n$ for finite $n$ is Polish,
|
||||||
|
\item $[0,1]$,
|
||||||
|
\item any countable discrete topological space,
|
||||||
|
\item the completion of any separable metric space
|
||||||
|
considered as a topological space.
|
||||||
|
\end{itemize}
|
||||||
|
\end{example}
|
||||||
|
|
||||||
|
Polish spaces behave very nicely.
|
||||||
|
We will see that uncountable polish spaces have size $2^{\aleph_0}$.
|
||||||
|
There are good notions of big (comeager)
|
||||||
|
and small (meager).
|
||||||
|
|
||||||
|
\subsection{Topology background}
|
||||||
|
Recall the following notions:
|
||||||
|
\begin{definition}[\vocab{product topology}]
|
||||||
|
Let $(X_i)_{i \in I}$ be a family of topological spaces.
|
||||||
|
Consider the set $\prod_{i \in I} X_i$
|
||||||
|
and the topology induced by basic open sets
|
||||||
|
$\prod_{i \in I} U_i$ with $U_i \subseteq X_i$ open
|
||||||
|
and $U_i \subsetneq X_i$ for only finitely many $i$.
|
||||||
|
\end{definition}
|
||||||
|
\begin{fact}
|
||||||
|
Countable products of separable spaces are separable,
|
||||||
|
\end{fact}
|
||||||
|
\begin{definition}
|
||||||
|
A topological space $X$ is \vocab{second countable},
|
||||||
|
if it has a countable base.
|
||||||
|
\end{definition}
|
||||||
|
If $X$ is a topological space.
|
||||||
|
Then if $X$ is second countable, it is also separable.
|
||||||
|
However the converse of this does not hold.
|
||||||
|
|
||||||
|
\begin{example}
|
||||||
|
Let $X$ be an uncountable set.
|
||||||
|
Take $x_0 \in X$ and consider the topology given by
|
||||||
|
\[
|
||||||
|
\tau = \{U \subseteq X | U \ni x_0\} \cup \{\emptyset\}.
|
||||||
|
\]
|
||||||
|
Then $\{x_0\}$ is dense in $X$, but $X$ is not second countable.
|
||||||
|
\end{example}
|
||||||
|
\begin{example}[Sorgenfrey line]
|
||||||
|
\todo{Counterexamples in Topology}
|
||||||
|
\end{example}
|
||||||
|
|
||||||
|
\begin{fact}
|
||||||
|
For metric spaces, the following are equivalent:
|
||||||
|
\begin{itemize}
|
||||||
|
\item separable,
|
||||||
|
\item second-countable,
|
||||||
|
\item \vocab{Lindelöf} (every open cover has a countable subcover).
|
||||||
|
\end{itemize}
|
||||||
|
\end{fact}
|
||||||
|
\begin{fact}
|
||||||
|
Compact\footnote{It is not clear whether compact means compact and Hausdorff in this lecture.} Hausdorff spaces are \vocab{normal} (T4)
|
||||||
|
i.e.~two disjoint closed subsets can be separated
|
||||||
|
by open sets.
|
||||||
|
\end{fact}
|
||||||
|
\begin{fact}
|
||||||
|
For a metric space, the following are equivalent:
|
||||||
|
\begin{itemize}
|
||||||
|
\item compact,
|
||||||
|
\item \vocab{sequentially compact} (every sequence has a convergent subsequence),
|
||||||
|
\item complete and \vocab{totally bounded}
|
||||||
|
(for all $\epsilon > 0$ we can cover the space with finitely many $\epsilon$-balls).
|
||||||
|
\end{itemize}
|
||||||
|
\end{fact}
|
||||||
|
\begin{theorem}[Urysohn's metrisation theorem]
|
||||||
|
Let $X$ be a topological space.
|
||||||
|
If $X$ is
|
||||||
|
\begin{itemize}
|
||||||
|
\item second countable,
|
||||||
|
\item Hausdorff and
|
||||||
|
\item regular (T3)
|
||||||
|
\end{itemize}
|
||||||
|
then $X$ is metrisable.
|
||||||
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{fact}
|
||||||
|
If $X$ is a compact Hausdorff space,
|
||||||
|
the following are equivalent:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $X$ is Polish,
|
||||||
|
\item $X$ is metrisable,
|
||||||
|
\item $X$ is second countable.
|
||||||
|
\end{itemize}
|
||||||
|
\end{fact}
|
||||||
|
|
||||||
|
\subsection{Some facts about polish spaces}
|
||||||
|
|
||||||
|
\begin{fact}
|
||||||
|
Let $(X, \tau)$ be a topological space.
|
||||||
|
Let $d$ be a metric on $X$.
|
||||||
|
We will denote the topology induces by this metric as $\tau_d$.
|
||||||
|
To show that $\tau = \tau_d$,
|
||||||
|
it is equivalent to show that
|
||||||
|
\begin{itemize}
|
||||||
|
\item every open $d$-ball is in $\tau$ ($\implies \tau_d \subseteq d$ )
|
||||||
|
and
|
||||||
|
\item every open set in $\tau$ is a union of open $d$-balls.
|
||||||
|
\end{itemize}
|
||||||
|
To show that $\tau_d = \tau_{d'}$
|
||||||
|
for two metrics $d, d'$,
|
||||||
|
suffices to show that open balls in one metric are unions of open balls in the other.
|
||||||
|
\end{fact}
|
||||||
|
|
||||||
|
\begin{notation}
|
||||||
|
We sometimes denote $\min(a,b)$ by $a \wedge b$.
|
||||||
|
\end{notation}
|
||||||
|
|
||||||
|
\begin{proposition}
|
||||||
|
\label{prop:boundedmetric}
|
||||||
|
Let $(X, \tau)$ be a topological space,
|
||||||
|
$d$ a metric on $ X$ compatible with $\tau$ (i.e.~it induces $\tau$).
|
||||||
|
|
||||||
|
Then $d' \coloneqq \min(d,1)$ is also a metric compatible with $\tau$.
|
||||||
|
\end{proposition}
|
||||||
|
\begin{proof}
|
||||||
|
To check the triangle inequality:
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
d(x,y) \wedge 1 &\le & \left( d(x,z) + d(y,z) \right) \wedge 1\\
|
||||||
|
&\le & \left( d(x,z) \wedge 1 \right) + \left( d(y,z) \wedge 1 \right).
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
|
For $\epsilon \le 1$ we have $B_\epsilon'(x) = B_\epsilon(x)$
|
||||||
|
and for $\epsilon > 1$, $B'_\epsilon(x) = X$.
|
||||||
|
|
||||||
|
Since $d$ is complete, we have that $d'$ is complete.
|
||||||
|
\end{proof}
|
||||||
|
\begin{proposition}
|
||||||
|
Let $A$ be a Polish space.
|
||||||
|
Then $A^{\omega}$ Polish.
|
||||||
|
\end{proposition}
|
||||||
|
\begin{proof}
|
||||||
|
Let $A$ be separable.
|
||||||
|
Then $A^{\omega}$ is separable.
|
||||||
|
(Consider the basic open sets of the product topology).
|
||||||
|
|
||||||
|
Let $d \le 1$ be a complete metric on $A$.
|
||||||
|
Define $D$ on $A^\omega$ by
|
||||||
|
\[
|
||||||
|
D\left( (x_n), (y_n) \right) \coloneqq
|
||||||
|
\sum_{n< \omega} 2^{-(n+1)} d(x_n, y_n).
|
||||||
|
\]
|
||||||
|
Clearly $D \le 1$.
|
||||||
|
It is also clear, that $D$ is a metric.
|
||||||
|
|
||||||
|
We need to check that $D$ is complete:
|
||||||
|
Let $(x_n)^{(k)}$ be a Cauchy sequence in $A^{\omega}$.
|
||||||
|
Consider the pointwise limit $(a_n)$.
|
||||||
|
This exists since $x_n^{(k)}$ is Cauchy for every fixed $n$.
|
||||||
|
Then $(x_n)^{(k)} \xrightarrow{k \to \infty} (a_n)$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{definition}[Our favourite Polish spaces]
|
||||||
|
\begin{itemize}
|
||||||
|
\item $2^{\omega}$ is called the \vocab{Cantor set}.
|
||||||
|
(Consider $2$ with the discrete topology)
|
||||||
|
\item $\omega^{\omega}$ is called the \vocab{Baire space}.
|
||||||
|
($\omega$ with descrete topology)
|
||||||
|
\item $[0,1]^{\omega}$ is called the \vocab{Hilbert cube}.
|
||||||
|
($[0,1] \subseteq \R$ with the usual topology)
|
||||||
|
\end{itemize}
|
||||||
|
\end{definition}
|
||||||
|
\begin{proposition}
|
||||||
|
Let $X$ be a separable, metrisable topological space.
|
||||||
|
Then $X$ topologically embeds into the
|
||||||
|
\vocab{Hilbert cube},
|
||||||
|
i.e. there is an injective $f: X \hookrightarrow [0,1]^{\omega}$
|
||||||
|
such that $f: X \to f(X)$ is a homeomorphism.
|
||||||
|
\end{proposition}
|
||||||
|
\begin{proof}
|
||||||
|
$X$ is separable, so it has some countable dense subset,
|
||||||
|
which we order as a sequence $(x_n)_{n \in \omega}$.
|
||||||
|
|
||||||
|
Let $d$ be a metric on $X$ which is compatible with the topology.
|
||||||
|
W.l.o.g.~$d \le 1$ (by \yaref{prop:boundedmetric}).
|
||||||
|
|
||||||
|
Let $d$ be the metric of $X$ and define
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
f\colon X &\longrightarrow & [0,1]^{\omega} \\
|
||||||
|
x&\longmapsto & (d(x,x_n))_{n < \omega}
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
|
\begin{claim}
|
||||||
|
$f$ is injective.
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
Suppose that $f(x) = f(y)$.
|
||||||
|
Then $d(x,x_n) = d(y,y_n)$ for all $n$.
|
||||||
|
Hence $d(x,y) \le d(x,x_n) + d(y,x_n) = 2 d(x,x_n)$.
|
||||||
|
Since $(x_n)$ is dense, we get $d(x,y) = 0$.
|
||||||
|
\end{subproof}
|
||||||
|
\begin{claim}
|
||||||
|
$f$ is continuous.
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
Consider a basic open set in $[0,1]^{\omega}$,
|
||||||
|
i.e. specify open sets $U_1, \ldots, U_n$ on finitely many coordinates.
|
||||||
|
$f^{-1}(U_1 \times \ldots \times U_n \times \ldots)$
|
||||||
|
is a finite intersection of open sets,
|
||||||
|
hence it is open.
|
||||||
|
\end{subproof}
|
||||||
|
\begin{claim}
|
||||||
|
$f^{-1}$ is continuous.
|
||||||
|
\end{claim}
|
||||||
|
\begin{subproof}
|
||||||
|
\todo{Exercise!}
|
||||||
|
\end{subproof}
|
||||||
|
\end{proof}
|
||||||
|
\begin{proposition}
|
||||||
|
Countable disjoint unions of Polish spaces are Polish.
|
||||||
|
\end{proposition}
|
||||||
|
\begin{proof}
|
||||||
|
Define a metric in the obvious way.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{proposition}
|
||||||
|
Closed subspaces of Polish spaces are Polish.
|
||||||
|
\end{proposition}
|
||||||
|
\begin{proof}
|
||||||
|
Let $X$ be Polish and $V \subseteq X$ closed.
|
||||||
|
Let $d$ be a complete metric on $X$.
|
||||||
|
Then $d\defon{V}$ is complete.
|
||||||
|
Subspaces of second countable spaces
|
||||||
|
are second countable.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{definition}
|
||||||
|
Let $X$ be a topological space.
|
||||||
|
A subspace $A \subseteq X$ is called
|
||||||
|
$G_\delta$\footnote{Gebietdurchschnitt}, if it is a countable intersection of open sets.
|
||||||
|
\end{definition}
|
||||||
|
|
||||||
|
Next time: Closed sets are $G_\delta$.
|
||||||
|
A subspace of a Polish space is Polish iff it is $G_{\delta}$
|
||||||
|
|
||||||
|
|
||||||
|
|
145
inputs/lecture_02.tex
Normal file
145
inputs/lecture_02.tex
Normal file
|
@ -0,0 +1,145 @@
|
||||||
|
\lecture{02}{2023-10-13}{Subsets of Polish spaces}
|
||||||
|
|
||||||
|
\begin{theorem}
|
||||||
|
\label{subspacegdelta}
|
||||||
|
A subspace of a Polish space is Polish
|
||||||
|
iff it is $G_{\delta}$.
|
||||||
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{remark}
|
||||||
|
Closed subsets of a metric space $(X, d )$
|
||||||
|
are $G_{\delta}$.
|
||||||
|
\end{remark}
|
||||||
|
\begin{proof}
|
||||||
|
Let $C \subseteq X$ be closed.
|
||||||
|
Let $U_{\frac{1}{n}} \coloneqq \{x | d(x, C) < \frac{1}{n}\}$.
|
||||||
|
\todo{Exercise}
|
||||||
|
Clearly $C \subseteq \bigcap U_{\frac{1}{n}}$.
|
||||||
|
Let $x \in \bigcap U_{\frac{1}{n}}$.
|
||||||
|
Then $\forall n .~ \exists x_n\in C.~d(x,x_n) < \frac{1}{n}$.
|
||||||
|
The $x_n$ converge to $x$ and since $C$ is closed,
|
||||||
|
we get $x \in C$.
|
||||||
|
Hence $C = \bigcap U_{\frac{1}{n}}$
|
||||||
|
is $G_{\delta}$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{example}
|
||||||
|
Let $ X$ be Polish.
|
||||||
|
Let $d$ be a complete metric on $X$.
|
||||||
|
\begin{enumerate}[a)]
|
||||||
|
\item If $Y \subseteq X$ is closed,
|
||||||
|
then $(Y,d\defon{Y})$ is complete.
|
||||||
|
\item $Y = (0,1) \subseteq \R$
|
||||||
|
with the usual metric $d(x,y) = |x-y|$.
|
||||||
|
Then $x_n \to 0$ is Cauchy in $((0,1), d)$.
|
||||||
|
|
||||||
|
But
|
||||||
|
\[
|
||||||
|
d_1(x,y) \coloneqq | x -y|
|
||||||
|
+ \left|\frac{1}{\min(x, 1- x)}
|
||||||
|
- \frac{1}{\min(y, 1-y)}
|
||||||
|
\right|
|
||||||
|
\]
|
||||||
|
also is a complete metric on $(0,1)$
|
||||||
|
which is compatible with $d$.
|
||||||
|
|
||||||
|
We want to generalize this idea.
|
||||||
|
\end{enumerate}
|
||||||
|
\end{example}
|
||||||
|
|
||||||
|
\begin{refproof}{subspacegdelta}
|
||||||
|
\begin{claim}
|
||||||
|
\label{psubspacegdelta:c1}
|
||||||
|
If $Y \subseteq (X,d)$ is $G_{\delta}$,
|
||||||
|
then there exists a complete metric on $Y$.
|
||||||
|
\end{claim}
|
||||||
|
\begin{refproof}{psubspacegdelta:c1}
|
||||||
|
Let $Y = U$be open in $X$.
|
||||||
|
Consider the map
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
f_U\colon U &\longrightarrow &
|
||||||
|
\underbrace{X}_{d} \times \underbrace{\R}_{|\cdot |} \\
|
||||||
|
x &\longmapsto & \left( x, \frac{1}{d(x, U^c)} \right).
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
|
Note that $X \times \R$ with the
|
||||||
|
\[d_1((x_1,y_1), (x_2, y_2)) \coloneqq d(x_1,x_2) + |y_1 - y_2|\]
|
||||||
|
metric is complete.
|
||||||
|
|
||||||
|
$f_U$ is an embedding of $U$ into $X \times \R$:
|
||||||
|
\begin{itemize}
|
||||||
|
\item It is injective because of the first coordinate.
|
||||||
|
\item It is continuous since $d(x, U^c)$ is continuous
|
||||||
|
and only takes strictly positive values. % TODO
|
||||||
|
\item The inverse is continuous because projections
|
||||||
|
are continuous.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
So we have shown that $U$ is homeomorphic to % TODO with ?
|
||||||
|
the graph of $\tilde{f_U}\colon x \mapsto \frac{1}{d(x, U^c)}$.
|
||||||
|
The graph is closed in $U \times \R$,
|
||||||
|
because $\tilde{f_U}$ is continuous.
|
||||||
|
It is closed in $X \times \R$ because
|
||||||
|
$\tilde{f_U} \to \infty$ for $d(x, U^c) \to 0$.
|
||||||
|
\todo{Make this precise}
|
||||||
|
|
||||||
|
Therefore we identified $U$ with a closed subspace of
|
||||||
|
the Polish space $(X \times \R, d_1)$.
|
||||||
|
\end{refproof}
|
||||||
|
|
||||||
|
Let $Y = \bigcap_{n \in \N} U_n$ be $G_{\delta}$.
|
||||||
|
Take
|
||||||
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
f_Y\colon Y &\longrightarrow & X \times \R^{\N} \\
|
||||||
|
x &\longmapsto &
|
||||||
|
\left(x, \left( \frac{1}{\delta(x,U_n^c)} \right)_{n \in \N}\right)
|
||||||
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
|
As for an open $U$, $f_Y$ is an embedding.
|
||||||
|
Since $X \times \R^{\N}$
|
||||||
|
is completely metrizable,
|
||||||
|
so is the closed set $f_Y(Y) \subseteq X \times \R^\N$.
|
||||||
|
|
||||||
|
\begin{claim}
|
||||||
|
\label{psubspacegdelta:c2}
|
||||||
|
If $Y \subseteq (X,d)$ is completely metrizable,
|
||||||
|
then $Y$ is a $G_{\delta}$ subspace.
|
||||||
|
\end{claim}
|
||||||
|
\begin{refproof}{psubspacegdelta:c2}
|
||||||
|
There exists a complete metric $d_Y$ on $Y$.
|
||||||
|
For every $n$,
|
||||||
|
let $V_n \subseteq X$ be the union
|
||||||
|
of all open sets $U \subseteq X$ such that
|
||||||
|
\begin{enumerate}[(i)]
|
||||||
|
\item $U \cap Y \neq \emptyset$,
|
||||||
|
\item $\diam_d(U) \le \frac{1}{n}$,
|
||||||
|
\item $\diam_{d_Y}(U \cap Y) \le \frac{1}{n}$.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
We want to show that $Y = \bigcap_{n \in \N} V_n$.
|
||||||
|
For $x \in Y$, $n \in \N$ we have $x \in V_n$,
|
||||||
|
as we can choose two neighbourhoods
|
||||||
|
$U_1$ (open in $Y)$ and $U_2$ (open in $X$ ) of $x$,
|
||||||
|
such that $\diam_{d_Y}(U) < \frac{1}{n}$
|
||||||
|
and $U_2 \cap Y = U_1$.
|
||||||
|
Additionally choose $x \in U_3$ open in $X$
|
||||||
|
with $\diam_{d}(U_3) < \frac{1}{n}$.
|
||||||
|
Then consider $U_2 \cap U_3 \subseteq V_n$.
|
||||||
|
Hence $Y \subseteq \bigcap_{n \in \N} V_n$.
|
||||||
|
|
||||||
|
Now let $x \in \bigcap_{n \in \N} V_n$.
|
||||||
|
For each $n$ pick $x \in U_n \subseteq X$ open
|
||||||
|
satisfying (i), (ii), (iii).
|
||||||
|
W.l.o.g. the $U_n$ are decreasing.
|
||||||
|
From (i) and (ii) it follows that $x \in \overline{Y}$,
|
||||||
|
since we can consider a sequence of points $y_n \in U_n \cap Y$
|
||||||
|
and get $y_n \xrightarrow{d} x$.
|
||||||
|
On the other hand $\diam_{d_Y}(U_n \cap Y) \le \frac{1}{n}$,
|
||||||
|
so the $y_n$ form a Cauchy sequence with respect to $d_Y$,
|
||||||
|
since $\diam(U_n \cap Y) \xrightarrow{d_Y} 0$,
|
||||||
|
hence $\diam(\overline{U_n \cap Y}) \xrightarrow{d_Y} 0$.
|
||||||
|
$y_n$ converges to the unique point in $\bigcap_{n} \overline{U_n \cap Y}$.
|
||||||
|
Since the topologies agree, this point is $x$.
|
||||||
|
\end{refproof}
|
||||||
|
\end{refproof}
|
||||||
|
|
|
@ -8,6 +8,7 @@
|
||||||
\usepackage[index]{mkessler-vocab}
|
\usepackage[index]{mkessler-vocab}
|
||||||
\usepackage{mkessler-code}
|
\usepackage{mkessler-code}
|
||||||
\usepackage{jrpie-math}
|
\usepackage{jrpie-math}
|
||||||
|
\usepackage{jrpie-yaref}
|
||||||
\usepackage[normalem]{ulem}
|
\usepackage[normalem]{ulem}
|
||||||
\usepackage{pdflscape}
|
\usepackage{pdflscape}
|
||||||
\usepackage{longtable}
|
\usepackage{longtable}
|
||||||
|
@ -126,6 +127,4 @@
|
||||||
\newcommand{\concat}{{}^\frown}
|
\newcommand{\concat}{{}^\frown}
|
||||||
\DeclareMathOperator{\hght}{height}
|
\DeclareMathOperator{\hght}{height}
|
||||||
|
|
||||||
\DeclareSimpleMathOperator{Prod} % TODO Remove this. Did I mean \prod ?
|
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
||||||
|
|
||||||
\newcommand{\lecture}[2]{Lecture #1 #2}
|
|
||||||
|
|
|
@ -1,9 +1,9 @@
|
||||||
\documentclass[10pt,ngerman,a4paper,fancyfoot,git]{mkessler-script}
|
\documentclass[10pt,ngerman,a4paper,fancyfoot,git]{mkessler-script}
|
||||||
|
|
||||||
\course{Logic 3: Abstract Topological Dynamics and Descriptive Set Theory}
|
\course{Logic 3: Abstract Topological Dynamics and Descriptive Set Theory}
|
||||||
\lecturer{}
|
\lecturer{Aleksandra Kwiatkowska}
|
||||||
\assistant{}
|
%\assistant{}
|
||||||
\author{}
|
\author{Josia Pietsch}
|
||||||
|
|
||||||
\usepackage{logic}
|
\usepackage{logic}
|
||||||
|
|
||||||
|
@ -24,6 +24,9 @@
|
||||||
|
|
||||||
\newpage
|
\newpage
|
||||||
|
|
||||||
|
\input{inputs/lecture_01}
|
||||||
|
\input{inputs/lecture_02}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\cleardoublepage
|
\cleardoublepage
|
||||||
|
|
Loading…
Reference in a new issue