initial commit
This commit is contained in:
parent
503e91edfe
commit
8359683da6
@ -1,7 +1,7 @@
|
||||
# Logic 3: Abstract Topological Dynamics and Descriptive Set Theory
|
||||
|
||||
These are my notes on the lecture Logic 3: Abstract Topological Dynamics and Descriptive Set Theory,
|
||||
taught by [TODO]
|
||||
taught by Aleksandra Kwiatkowska
|
||||
in the winter 23/24 at the University Münster.
|
||||
|
||||
**This is not an official script.**
|
||||
|
17
inputs/intro.tex
Normal file
17
inputs/intro.tex
Normal file
@ -0,0 +1,17 @@
|
||||
These are my notes on the lecture Probability Theory,
|
||||
taught by \textsc{Aleksandra Kwiatkowska}
|
||||
in the summer term 2023 at the University Münster.
|
||||
|
||||
\begin{warning}
|
||||
This is not an official script.
|
||||
The official lecture notes can be found on
|
||||
\href{https://sites.google.com/site/akwiatkmath/teaching/logic-3-abstract-topological-dynamics-and-descriptive-set-theory}{here}.
|
||||
\end{warning}
|
||||
|
||||
If you find errors or want to improve something,
|
||||
please send me a message:\\
|
||||
\texttt{lecturenotes@jrpie.de}.
|
||||
|
||||
This notes follow the way the material was presented in the lecture rather
|
||||
closely. Additions (e.g.~from exercise sheets)
|
||||
and slight modifications have been marked with $\dagger$.
|
260
inputs/lecture_01.tex
Normal file
260
inputs/lecture_01.tex
Normal file
@ -0,0 +1,260 @@
|
||||
\lecture{01}{2023-10-10}{Introduction}
|
||||
\section{Introduction}
|
||||
|
||||
\begin{definition}
|
||||
Let $X$ be a nonempty topological space.
|
||||
We say that $X$ is a \vocab{Polish space}
|
||||
if $X$ is
|
||||
\begin{itemize}
|
||||
\item \vocab{separable},
|
||||
i.e.~there exists a countable dense subset, and
|
||||
\item \vocab{completely metrisable},
|
||||
i.e.~there exists a complete metric on $X$
|
||||
which induces the topology.
|
||||
\end{itemize}
|
||||
\end{definition}
|
||||
Note that Polishness is preserved under homeomorphisms,
|
||||
i.e.~it is really a topological property.
|
||||
|
||||
\begin{example}
|
||||
\begin{itemize}
|
||||
\item $\R$ is a Polish space,
|
||||
\item $\R^n$ for finite $n$ is Polish,
|
||||
\item $[0,1]$,
|
||||
\item any countable discrete topological space,
|
||||
\item the completion of any separable metric space
|
||||
considered as a topological space.
|
||||
\end{itemize}
|
||||
\end{example}
|
||||
|
||||
Polish spaces behave very nicely.
|
||||
We will see that uncountable polish spaces have size $2^{\aleph_0}$.
|
||||
There are good notions of big (comeager)
|
||||
and small (meager).
|
||||
|
||||
\subsection{Topology background}
|
||||
Recall the following notions:
|
||||
\begin{definition}[\vocab{product topology}]
|
||||
Let $(X_i)_{i \in I}$ be a family of topological spaces.
|
||||
Consider the set $\prod_{i \in I} X_i$
|
||||
and the topology induced by basic open sets
|
||||
$\prod_{i \in I} U_i$ with $U_i \subseteq X_i$ open
|
||||
and $U_i \subsetneq X_i$ for only finitely many $i$.
|
||||
\end{definition}
|
||||
\begin{fact}
|
||||
Countable products of separable spaces are separable,
|
||||
\end{fact}
|
||||
\begin{definition}
|
||||
A topological space $X$ is \vocab{second countable},
|
||||
if it has a countable base.
|
||||
\end{definition}
|
||||
If $X$ is a topological space.
|
||||
Then if $X$ is second countable, it is also separable.
|
||||
However the converse of this does not hold.
|
||||
|
||||
\begin{example}
|
||||
Let $X$ be an uncountable set.
|
||||
Take $x_0 \in X$ and consider the topology given by
|
||||
\[
|
||||
\tau = \{U \subseteq X | U \ni x_0\} \cup \{\emptyset\}.
|
||||
\]
|
||||
Then $\{x_0\}$ is dense in $X$, but $X$ is not second countable.
|
||||
\end{example}
|
||||
\begin{example}[Sorgenfrey line]
|
||||
\todo{Counterexamples in Topology}
|
||||
\end{example}
|
||||
|
||||
\begin{fact}
|
||||
For metric spaces, the following are equivalent:
|
||||
\begin{itemize}
|
||||
\item separable,
|
||||
\item second-countable,
|
||||
\item \vocab{Lindelöf} (every open cover has a countable subcover).
|
||||
\end{itemize}
|
||||
\end{fact}
|
||||
\begin{fact}
|
||||
Compact\footnote{It is not clear whether compact means compact and Hausdorff in this lecture.} Hausdorff spaces are \vocab{normal} (T4)
|
||||
i.e.~two disjoint closed subsets can be separated
|
||||
by open sets.
|
||||
\end{fact}
|
||||
\begin{fact}
|
||||
For a metric space, the following are equivalent:
|
||||
\begin{itemize}
|
||||
\item compact,
|
||||
\item \vocab{sequentially compact} (every sequence has a convergent subsequence),
|
||||
\item complete and \vocab{totally bounded}
|
||||
(for all $\epsilon > 0$ we can cover the space with finitely many $\epsilon$-balls).
|
||||
\end{itemize}
|
||||
\end{fact}
|
||||
\begin{theorem}[Urysohn's metrisation theorem]
|
||||
Let $X$ be a topological space.
|
||||
If $X$ is
|
||||
\begin{itemize}
|
||||
\item second countable,
|
||||
\item Hausdorff and
|
||||
\item regular (T3)
|
||||
\end{itemize}
|
||||
then $X$ is metrisable.
|
||||
\end{theorem}
|
||||
|
||||
\begin{fact}
|
||||
If $X$ is a compact Hausdorff space,
|
||||
the following are equivalent:
|
||||
\begin{itemize}
|
||||
\item $X$ is Polish,
|
||||
\item $X$ is metrisable,
|
||||
\item $X$ is second countable.
|
||||
\end{itemize}
|
||||
\end{fact}
|
||||
|
||||
\subsection{Some facts about polish spaces}
|
||||
|
||||
\begin{fact}
|
||||
Let $(X, \tau)$ be a topological space.
|
||||
Let $d$ be a metric on $X$.
|
||||
We will denote the topology induces by this metric as $\tau_d$.
|
||||
To show that $\tau = \tau_d$,
|
||||
it is equivalent to show that
|
||||
\begin{itemize}
|
||||
\item every open $d$-ball is in $\tau$ ($\implies \tau_d \subseteq d$ )
|
||||
and
|
||||
\item every open set in $\tau$ is a union of open $d$-balls.
|
||||
\end{itemize}
|
||||
To show that $\tau_d = \tau_{d'}$
|
||||
for two metrics $d, d'$,
|
||||
suffices to show that open balls in one metric are unions of open balls in the other.
|
||||
\end{fact}
|
||||
|
||||
\begin{notation}
|
||||
We sometimes denote $\min(a,b)$ by $a \wedge b$.
|
||||
\end{notation}
|
||||
|
||||
\begin{proposition}
|
||||
\label{prop:boundedmetric}
|
||||
Let $(X, \tau)$ be a topological space,
|
||||
$d$ a metric on $ X$ compatible with $\tau$ (i.e.~it induces $\tau$).
|
||||
|
||||
Then $d' \coloneqq \min(d,1)$ is also a metric compatible with $\tau$.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
To check the triangle inequality:
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
d(x,y) \wedge 1 &\le & \left( d(x,z) + d(y,z) \right) \wedge 1\\
|
||||
&\le & \left( d(x,z) \wedge 1 \right) + \left( d(y,z) \wedge 1 \right).
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
For $\epsilon \le 1$ we have $B_\epsilon'(x) = B_\epsilon(x)$
|
||||
and for $\epsilon > 1$, $B'_\epsilon(x) = X$.
|
||||
|
||||
Since $d$ is complete, we have that $d'$ is complete.
|
||||
\end{proof}
|
||||
\begin{proposition}
|
||||
Let $A$ be a Polish space.
|
||||
Then $A^{\omega}$ Polish.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
Let $A$ be separable.
|
||||
Then $A^{\omega}$ is separable.
|
||||
(Consider the basic open sets of the product topology).
|
||||
|
||||
Let $d \le 1$ be a complete metric on $A$.
|
||||
Define $D$ on $A^\omega$ by
|
||||
\[
|
||||
D\left( (x_n), (y_n) \right) \coloneqq
|
||||
\sum_{n< \omega} 2^{-(n+1)} d(x_n, y_n).
|
||||
\]
|
||||
Clearly $D \le 1$.
|
||||
It is also clear, that $D$ is a metric.
|
||||
|
||||
We need to check that $D$ is complete:
|
||||
Let $(x_n)^{(k)}$ be a Cauchy sequence in $A^{\omega}$.
|
||||
Consider the pointwise limit $(a_n)$.
|
||||
This exists since $x_n^{(k)}$ is Cauchy for every fixed $n$.
|
||||
Then $(x_n)^{(k)} \xrightarrow{k \to \infty} (a_n)$.
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}[Our favourite Polish spaces]
|
||||
\begin{itemize}
|
||||
\item $2^{\omega}$ is called the \vocab{Cantor set}.
|
||||
(Consider $2$ with the discrete topology)
|
||||
\item $\omega^{\omega}$ is called the \vocab{Baire space}.
|
||||
($\omega$ with descrete topology)
|
||||
\item $[0,1]^{\omega}$ is called the \vocab{Hilbert cube}.
|
||||
($[0,1] \subseteq \R$ with the usual topology)
|
||||
\end{itemize}
|
||||
\end{definition}
|
||||
\begin{proposition}
|
||||
Let $X$ be a separable, metrisable topological space.
|
||||
Then $X$ topologically embeds into the
|
||||
\vocab{Hilbert cube},
|
||||
i.e. there is an injective $f: X \hookrightarrow [0,1]^{\omega}$
|
||||
such that $f: X \to f(X)$ is a homeomorphism.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
$X$ is separable, so it has some countable dense subset,
|
||||
which we order as a sequence $(x_n)_{n \in \omega}$.
|
||||
|
||||
Let $d$ be a metric on $X$ which is compatible with the topology.
|
||||
W.l.o.g.~$d \le 1$ (by \yaref{prop:boundedmetric}).
|
||||
|
||||
Let $d$ be the metric of $X$ and define
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
f\colon X &\longrightarrow & [0,1]^{\omega} \\
|
||||
x&\longmapsto & (d(x,x_n))_{n < \omega}
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
\begin{claim}
|
||||
$f$ is injective.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Suppose that $f(x) = f(y)$.
|
||||
Then $d(x,x_n) = d(y,y_n)$ for all $n$.
|
||||
Hence $d(x,y) \le d(x,x_n) + d(y,x_n) = 2 d(x,x_n)$.
|
||||
Since $(x_n)$ is dense, we get $d(x,y) = 0$.
|
||||
\end{subproof}
|
||||
\begin{claim}
|
||||
$f$ is continuous.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Consider a basic open set in $[0,1]^{\omega}$,
|
||||
i.e. specify open sets $U_1, \ldots, U_n$ on finitely many coordinates.
|
||||
$f^{-1}(U_1 \times \ldots \times U_n \times \ldots)$
|
||||
is a finite intersection of open sets,
|
||||
hence it is open.
|
||||
\end{subproof}
|
||||
\begin{claim}
|
||||
$f^{-1}$ is continuous.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
\todo{Exercise!}
|
||||
\end{subproof}
|
||||
\end{proof}
|
||||
\begin{proposition}
|
||||
Countable disjoint unions of Polish spaces are Polish.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
Define a metric in the obvious way.
|
||||
\end{proof}
|
||||
|
||||
\begin{proposition}
|
||||
Closed subspaces of Polish spaces are Polish.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
Let $X$ be Polish and $V \subseteq X$ closed.
|
||||
Let $d$ be a complete metric on $X$.
|
||||
Then $d\defon{V}$ is complete.
|
||||
Subspaces of second countable spaces
|
||||
are second countable.
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}
|
||||
Let $X$ be a topological space.
|
||||
A subspace $A \subseteq X$ is called
|
||||
$G_\delta$\footnote{Gebietdurchschnitt}, if it is a countable intersection of open sets.
|
||||
\end{definition}
|
||||
|
||||
Next time: Closed sets are $G_\delta$.
|
||||
A subspace of a Polish space is Polish iff it is $G_{\delta}$
|
||||
|
||||
|
||||
|
145
inputs/lecture_02.tex
Normal file
145
inputs/lecture_02.tex
Normal file
@ -0,0 +1,145 @@
|
||||
\lecture{02}{2023-10-13}{Subsets of Polish spaces}
|
||||
|
||||
\begin{theorem}
|
||||
\label{subspacegdelta}
|
||||
A subspace of a Polish space is Polish
|
||||
iff it is $G_{\delta}$.
|
||||
\end{theorem}
|
||||
|
||||
\begin{remark}
|
||||
Closed subsets of a metric space $(X, d )$
|
||||
are $G_{\delta}$.
|
||||
\end{remark}
|
||||
\begin{proof}
|
||||
Let $C \subseteq X$ be closed.
|
||||
Let $U_{\frac{1}{n}} \coloneqq \{x | d(x, C) < \frac{1}{n}\}$.
|
||||
\todo{Exercise}
|
||||
Clearly $C \subseteq \bigcap U_{\frac{1}{n}}$.
|
||||
Let $x \in \bigcap U_{\frac{1}{n}}$.
|
||||
Then $\forall n .~ \exists x_n\in C.~d(x,x_n) < \frac{1}{n}$.
|
||||
The $x_n$ converge to $x$ and since $C$ is closed,
|
||||
we get $x \in C$.
|
||||
Hence $C = \bigcap U_{\frac{1}{n}}$
|
||||
is $G_{\delta}$.
|
||||
\end{proof}
|
||||
|
||||
\begin{example}
|
||||
Let $ X$ be Polish.
|
||||
Let $d$ be a complete metric on $X$.
|
||||
\begin{enumerate}[a)]
|
||||
\item If $Y \subseteq X$ is closed,
|
||||
then $(Y,d\defon{Y})$ is complete.
|
||||
\item $Y = (0,1) \subseteq \R$
|
||||
with the usual metric $d(x,y) = |x-y|$.
|
||||
Then $x_n \to 0$ is Cauchy in $((0,1), d)$.
|
||||
|
||||
But
|
||||
\[
|
||||
d_1(x,y) \coloneqq | x -y|
|
||||
+ \left|\frac{1}{\min(x, 1- x)}
|
||||
- \frac{1}{\min(y, 1-y)}
|
||||
\right|
|
||||
\]
|
||||
also is a complete metric on $(0,1)$
|
||||
which is compatible with $d$.
|
||||
|
||||
We want to generalize this idea.
|
||||
\end{enumerate}
|
||||
\end{example}
|
||||
|
||||
\begin{refproof}{subspacegdelta}
|
||||
\begin{claim}
|
||||
\label{psubspacegdelta:c1}
|
||||
If $Y \subseteq (X,d)$ is $G_{\delta}$,
|
||||
then there exists a complete metric on $Y$.
|
||||
\end{claim}
|
||||
\begin{refproof}{psubspacegdelta:c1}
|
||||
Let $Y = U$be open in $X$.
|
||||
Consider the map
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
f_U\colon U &\longrightarrow &
|
||||
\underbrace{X}_{d} \times \underbrace{\R}_{|\cdot |} \\
|
||||
x &\longmapsto & \left( x, \frac{1}{d(x, U^c)} \right).
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
Note that $X \times \R$ with the
|
||||
\[d_1((x_1,y_1), (x_2, y_2)) \coloneqq d(x_1,x_2) + |y_1 - y_2|\]
|
||||
metric is complete.
|
||||
|
||||
$f_U$ is an embedding of $U$ into $X \times \R$:
|
||||
\begin{itemize}
|
||||
\item It is injective because of the first coordinate.
|
||||
\item It is continuous since $d(x, U^c)$ is continuous
|
||||
and only takes strictly positive values. % TODO
|
||||
\item The inverse is continuous because projections
|
||||
are continuous.
|
||||
\end{itemize}
|
||||
|
||||
So we have shown that $U$ is homeomorphic to % TODO with ?
|
||||
the graph of $\tilde{f_U}\colon x \mapsto \frac{1}{d(x, U^c)}$.
|
||||
The graph is closed in $U \times \R$,
|
||||
because $\tilde{f_U}$ is continuous.
|
||||
It is closed in $X \times \R$ because
|
||||
$\tilde{f_U} \to \infty$ for $d(x, U^c) \to 0$.
|
||||
\todo{Make this precise}
|
||||
|
||||
Therefore we identified $U$ with a closed subspace of
|
||||
the Polish space $(X \times \R, d_1)$.
|
||||
\end{refproof}
|
||||
|
||||
Let $Y = \bigcap_{n \in \N} U_n$ be $G_{\delta}$.
|
||||
Take
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
f_Y\colon Y &\longrightarrow & X \times \R^{\N} \\
|
||||
x &\longmapsto &
|
||||
\left(x, \left( \frac{1}{\delta(x,U_n^c)} \right)_{n \in \N}\right)
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
As for an open $U$, $f_Y$ is an embedding.
|
||||
Since $X \times \R^{\N}$
|
||||
is completely metrizable,
|
||||
so is the closed set $f_Y(Y) \subseteq X \times \R^\N$.
|
||||
|
||||
\begin{claim}
|
||||
\label{psubspacegdelta:c2}
|
||||
If $Y \subseteq (X,d)$ is completely metrizable,
|
||||
then $Y$ is a $G_{\delta}$ subspace.
|
||||
\end{claim}
|
||||
\begin{refproof}{psubspacegdelta:c2}
|
||||
There exists a complete metric $d_Y$ on $Y$.
|
||||
For every $n$,
|
||||
let $V_n \subseteq X$ be the union
|
||||
of all open sets $U \subseteq X$ such that
|
||||
\begin{enumerate}[(i)]
|
||||
\item $U \cap Y \neq \emptyset$,
|
||||
\item $\diam_d(U) \le \frac{1}{n}$,
|
||||
\item $\diam_{d_Y}(U \cap Y) \le \frac{1}{n}$.
|
||||
\end{enumerate}
|
||||
|
||||
We want to show that $Y = \bigcap_{n \in \N} V_n$.
|
||||
For $x \in Y$, $n \in \N$ we have $x \in V_n$,
|
||||
as we can choose two neighbourhoods
|
||||
$U_1$ (open in $Y)$ and $U_2$ (open in $X$ ) of $x$,
|
||||
such that $\diam_{d_Y}(U) < \frac{1}{n}$
|
||||
and $U_2 \cap Y = U_1$.
|
||||
Additionally choose $x \in U_3$ open in $X$
|
||||
with $\diam_{d}(U_3) < \frac{1}{n}$.
|
||||
Then consider $U_2 \cap U_3 \subseteq V_n$.
|
||||
Hence $Y \subseteq \bigcap_{n \in \N} V_n$.
|
||||
|
||||
Now let $x \in \bigcap_{n \in \N} V_n$.
|
||||
For each $n$ pick $x \in U_n \subseteq X$ open
|
||||
satisfying (i), (ii), (iii).
|
||||
W.l.o.g. the $U_n$ are decreasing.
|
||||
From (i) and (ii) it follows that $x \in \overline{Y}$,
|
||||
since we can consider a sequence of points $y_n \in U_n \cap Y$
|
||||
and get $y_n \xrightarrow{d} x$.
|
||||
On the other hand $\diam_{d_Y}(U_n \cap Y) \le \frac{1}{n}$,
|
||||
so the $y_n$ form a Cauchy sequence with respect to $d_Y$,
|
||||
since $\diam(U_n \cap Y) \xrightarrow{d_Y} 0$,
|
||||
hence $\diam(\overline{U_n \cap Y}) \xrightarrow{d_Y} 0$.
|
||||
$y_n$ converges to the unique point in $\bigcap_{n} \overline{U_n \cap Y}$.
|
||||
Since the topologies agree, this point is $x$.
|
||||
\end{refproof}
|
||||
\end{refproof}
|
||||
|
@ -8,6 +8,7 @@
|
||||
\usepackage[index]{mkessler-vocab}
|
||||
\usepackage{mkessler-code}
|
||||
\usepackage{jrpie-math}
|
||||
\usepackage{jrpie-yaref}
|
||||
\usepackage[normalem]{ulem}
|
||||
\usepackage{pdflscape}
|
||||
\usepackage{longtable}
|
||||
@ -126,6 +127,4 @@
|
||||
\newcommand{\concat}{{}^\frown}
|
||||
\DeclareMathOperator{\hght}{height}
|
||||
|
||||
\DeclareSimpleMathOperator{Prod} % TODO Remove this. Did I mean \prod ?
|
||||
|
||||
\newcommand{\lecture}[2]{Lecture #1 #2}
|
||||
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
||||
|
@ -1,9 +1,9 @@
|
||||
\documentclass[10pt,ngerman,a4paper,fancyfoot,git]{mkessler-script}
|
||||
|
||||
\course{Logic 3: Abstract Topological Dynamics and Descriptive Set Theory}
|
||||
\lecturer{}
|
||||
\assistant{}
|
||||
\author{}
|
||||
\lecturer{Aleksandra Kwiatkowska}
|
||||
%\assistant{}
|
||||
\author{Josia Pietsch}
|
||||
|
||||
\usepackage{logic}
|
||||
|
||||
@ -24,6 +24,9 @@
|
||||
|
||||
\newpage
|
||||
|
||||
\input{inputs/lecture_01}
|
||||
\input{inputs/lecture_02}
|
||||
|
||||
|
||||
|
||||
\cleardoublepage
|
||||
|
Loading…
Reference in New Issue
Block a user