FIXED IMPORTANT TYPO! & small changes

This commit is contained in:
Josia Pietsch 2024-01-13 23:42:59 +01:00
parent fc4f57a8b0
commit 82f44e36e8
Signed by: josia
GPG key ID: E70B571D66986A2D
3 changed files with 19 additions and 10 deletions

View file

@ -102,14 +102,13 @@
Equivalently
\begin{itemize}
\item $\overline{A}$ is nwd,
\item $X \setminus A$ is dense in $X$,
\item $X \setminus \overline{A}$ is dense in $X$,%
\item $\forall \emptyset \neq U \overset{\text{open}}{\subseteq} X.~
\exists \emptyset \neq V \overset{\text{open}}{\subseteq} U.~
V\cap A = \emptyset$.
(If we intersect $A$ with an open $U$,
then $A \cap U$ is not dense in $U$).
\end{itemize}
%\todo{Think about this}
A set $B \subseteq X$ is \vocab{meager}
(or \vocab{first category}),

View file

@ -1,14 +1,22 @@
\lecture{05}{2023-10-31}{}
\begin{fact}
A set $A$ is nwd iff $\overline{A}$ is nwd.
\begin{itemize}
\item A set $A$ is nwd iff $\overline{A}$ is nwd.
\item If $F$ is closed then $F$ is nwd iff $X \setminus F$ is open and dense.
\item Any meager set $B$ is contained in a meager $F_{\sigma}$-set.
\end{itemize}
If $F$ is closed then
$F$ is nwd iff $X \setminus F$ is open and dense.
Any meager set $B$ is contained in
a meager $F_{\sigma}$-set.
\end{fact}
\begin{proof} % remove?
\begin{itemize}
\item This follows from the definition as $\overline{\overline{A}} = \overline{A}$.
\item Trivial.
\item Let $B = \bigcup_{n < \omega} B_n$ be a union of nwd sets.
Then $B \subseteq \bigcup_{n < \omega} \overline{B_n}$.
\end{itemize}
\end{proof}
\begin{definition}
A \vocab{$\sigma$-algebra} on a set $X$
@ -46,7 +54,7 @@
\[
\left( \bigcup_{n < \omega} A_n \right) \symdif \left( \bigcup_{n < \omega} U_n \right)
\]
is meager,\todo{small exercise}
is meager,
hence $\bigcup_{n < \omega} A_n \in \cA$.
Let $A \in \cA$.
@ -61,7 +69,9 @@
In particular, $F \symdif \inter(F)$ is nwd.
\end{claim}
\begin{refproof}{thm:bairesigma:c1}
\todo{TODO}
$F \setminus \inter(F)$ is closed,
hence $\overline{F \setminus \inter(F)} = F \setminus \inter(F)$.
Clearly $\inter(F\setminus\inter(F)) = \emptyset$.
\end{refproof}
From the claim we get that

View file

@ -113,7 +113,7 @@ and $\Pi^0_2 = G_\delta$.
Furthermore define
\[
\Delta^0_\alpha(X(X)) \coloneqq \Sigma^0_\alpha(X) \cap \Pi^0_\alpha(X),
\Delta^0_\alpha(X) \coloneqq \Sigma^0_\alpha(X) \cap \Pi^0_\alpha(X),
\]
i.e.~$\Delta^0_1$ is the set of clopen sets.